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Counting Problem

Given a Boolean formula

Decision: is there a satisfying assignment φ?

Counting: how many satisfying assignments φ are there?



Holant Framework

Trace back to Valiant’s holographic transformation [Val06]

Capture many counting problems in a natural way, e.g. counting
perfect matchings

Provably more expressive than #CSP [FLS07]

Long line of research showing dichotomies in Holant framework
[KC16, CGW16, Bac18]



Holant problem

Input: any signature grid Ω = (G ,F , π) where G = (V ,E ) is a
graph, F is a set of functions [q]k → C, and π is a mapping from
the vertex set V to F .

Output: the Holant value HolantΩ =
∑
σ

∏
v∈V

fv (σ|E(v)) where σ is

a mapping E → [q], fv (·) := π(v) ∈ F , and E (v) denotes the set
of incident edges of v .



Holant problem; example

Example

Let q = {0, 1} and F = {At-Most-Onek}, then HolantΩ counts
the number of matchings.

Example

Let q = {0, 1, . . . , k − 1} and F = {All-Distinctk}, then
HolantΩ counts the number of proper edge colorings using at most
k colors.



Dichotomy results in Holant framework

Dichotomy says a problem is either tractable or #P-complete,
despite Ladner’s theorem (counting version).

See Guo and Lu’s survey On the Complexity of Holant Problems;
Cai and Chen’s book Complexity Dichotomies for Counting
Problems; Shuai’s thesis Complexity Classification of Counting
Problems on Boolean Variables for more information.



Dichotomy results in Holant framework; example

Theorem (Cai, Guo, Williams; 2012)

A Holant problem over an arbitrary set of complex-valued
symmetric constraint functions F on Boolean variables is
#P-complete unless:

I every function in F has arity at most two;

I F is transformable to an affine type;

I F is transformable to a product type;

I F is vanishing, combined with the right type of binary
functions;

I F belongs to a special category of vanishing type Fibonacci
gates.

in which the Holant value can be computed in polynomial time.



Bipartite Holant problem

Restrict underlying graph to be bipartite.

Input: any signature grid Ω = (G ,F ,G, π) where G = (V ,U,E ) is
a bipartite graph, F and G are two sets of functions [q]k → C, and
π is a mapping from the vertex set V ∪ U to F ∪ G such that
π(V ) ⊆ F and π(U) ⊆ G.

Output: HolantΩ =
∑
σ

∏
v∈V

fv (σ|E(v))
∏
u∈U

gu(σ|E(u)) where σ is a

mapping E → [q], fv (·) := π(v) ∈ F , gu(·) := π(u) ∈ G, and E (v)
denotes the set of incident edges of v .



#CSP

Fix a domain D = {1, 2, . . . , d} and a set of complex-valued
functions F = {f1, f2, . . . , fh} where fi : Dri → C for some ri .

Input: a tuple x = (x1, . . . , xn) of variables over D and a collection
I of tuples (f , i1, . . . , ir ) in which f is an r -ary function from F and
i1, . . . , ir ∈ [n].

Output: the partition function Z (I ) :=
∑

x∈Dn FI (x) where
FI (x) :=

∏
(f ,i1,...,ir )∈I f (xi1 , . . . , xir )

Observe this is the bipartite Holant problem with F on one side
and Equality:= {=k for all k ∈ N} on the other side!



Our main result

We initiate the study of Holant problems on bipartite graphs.

Specifically, We prove a dichotomy result on a class of 3-regular
bipartite graph Holant problem, namely Holant(f | =3) where
f = [x0, x1, x2, x3] is an arbitrary non-negative weighted symmetric
Boolean constraint function and =3 is the Equality3 function.

This is the most basic yet non-trivial bipartite setting.

A mere starting point for understanding bipartite Holant problems:
almost every generalization is an open problem at this point,

I including more than one constraint function on either side;

I other regularity parameter r ;

I real or complex valued constraint functions which allow
cancellations;

I ...



Hard problems become easy for bipartite graph?

Theorem (König)

In any bipartite graph, the number of edges in a maximum
matching equals the number of vertices in a minimum vertex cover.

Easy to find the minimum cardinality vertex cover in bipartite
graphs, which is NP-hard for general graphs. Is there new
algorithm in bipartite counting?

Remark
sometimes counting can be hard even when its “underlying”
decision problem is easy, e.g. counting the perfect matchings in a
bipartite graph is #P-complete [Val79].



Main theorem

Theorem (F. & Cai)

Holant{[x0, x1, x2, x3]|(=3)} where xi ≥ 0 for i = 0, 1, 2, 3 is
#P-hard except in the following cases, for which the problem is in
FP.

1. [x0, x1, x2, x3] is degenerate;

2. x1 = x2 = 0;

3. [(x1 = x3 = 0) ∧ (x0 = x2)] or [(x0 = x2 = 0) ∧ (x1 = x3)].

Condition 2 is called general equality and condition 3 is a special
case of what is called affine class [CC17]; both are within the
tractable cases of #CSP.



Gadget
Proofs of previous dichotomies make substantial use of gadgets

(a) G1

Definition
A bipartite gadget is a bipartite graph G = (U,V ,Ein,Eout) with
internal edges Ein and dangling edges Eout. Suppose there are m
and n dangling edges internally incident to vertices from U and V .
These m + n dangling edges correspond to Boolean variables
x1, . . . , xm, y1, . . . , yn and the gadget defines a function

f (x1, . . . , xm, y1, . . . , yn) =
∑

σ:Ein→{0,1}

∏
u∈U

f
(
σ̂|E(u)

) ∏
v∈V

(=3)
(
σ̂|E(v)

)
,

where σ̂ denotes the extension of σ by the assignment on the
dangling edges.



Main obstacle

When the graph is bipartite and r -regular, there is a number
theoretic limitation as to what types of gadgets one can possibly
construct.

Every constructible gadget must have a rigid arity restriction; e.g.,
if the gadget represents a constraint function that can be used for
a vertices in U or in V , the arity (the number of input variables) of
the function must be congruent to 0 modulo r .

In particular, one cannot form self-loop since that will break the
bipartite structure, which is one of the heavily used techniques in
proving previous dichotomy result.



New technique

Interpolate degenerate straddled bipartite function and split them
into unary functions.
By connecting one unary function with a ternary function, we get a
binary function and thus reduces to the following scenario:

Theorem (Kowalczyk & Cai; 2016)

Suppose a, b ∈ C, and let X = ab, Z =
(
a3+b3

2

)2
. Then

Holant([a, 1, b]| (=3)) is #P-hard except in the following cases, for
which the problem is in P.

1. X = 1;

2. X = Z = 0;

3. X = −1 and Z = 0;

4. X = −1 and Z = −1.



New technique; splitting

Lemma
Let f and g be two non-negative valued signatures. If a degenerate
nonnegative binary straddled signature

(
1 x
y xy

)
can be obtained or

interpolated in the problem Holant(f |g), then

Holant(f |{g , [1, x ]}) ≤T Holant(f |g).

A similar statement holds for adding the unary [1, y ] on the LHS.

Proof sketch.
Given any bipartite signature gird Ω = (G , π) for problem
Holant(f |{g , [1, x ]}), we replace every [1, x ] by

(
1 x
y xy

)
and “use

up” the extra [1, y ]’s by connecting them to f . This will compute
(Holant(G ))s for some s determined by the arities of f and g and
introduce a global factor, which doesn’t matter for the sake of
complexity.



New technique; interpolation

Lemma
Given the binary straddled signature G1 =

(
1 x2
x1 x3

)
with x1 6= 0 and

∆ :=
√

(1− x3)2 + 4x1x2 > 0, we can get unary signatures [1, x ]

on RHS or [y , 1] on LHS where x = ∆−(1−x3)
2x1

and y = ∆+(1−x3)
2x1

.

Proof.
The Jordan Canonical Form for G1 =

(−x y
1 1

) (
λ 0
0 µ

) (−x y
1 1

)−1
and

D = 1
x+y ( y xy

1 x ) =
(−x y

1 1

)
( 0 0

0 1 )
(−x y

1 1

)−1
. Given any signature

grid Ω where the binary degenerate straddled signature D appears
n times, we form gadgets G s

1 where 0 ≤ s ≤ n by iterating the G1

gadget s times and replacing each occurrence of D with G s
1 .

Denote the resulting signature grid as Ωs .



New technique; interpolation continued

Proof (Cont.)

We stratify the assignments in the Holant sum for Ω according to
assignments to

(
λ 0
0 µ

)
as:

1. (0, 0) i times;

2. (1, 1) j times;

with i + j = n. Let ci ,j be the sum over all such assignments of the
products of evaluations (including the contributions from

(−x y
1 1

)
and its inverse). Then we have

HolantΩs =
∑
i+j=n

(
λiµj

)s · ci ,j
and HolantΩ = c0,n. Since ∆ > 0, the coefficients form a full rank
Vandermonde matrix. Thus we can interpolate D by solving the
linear system of equations in polynomial time. Ignoring a nonzero
factor, we may split D into unary signatures [y , 1] on LHS or [1, x ]
on RHS.



Holographic transformation

Theorem (Valiant; 2008)

Let F and G be sets of complex-valued signatures over a domain
of size q. Suppose Ω is a bipartite signature grid over (F | G). If
T ∈ GLq(C), then

Holant q(Ω;F | G) = Holant q

(
Ω′;FT | T−1G

)
where Ω′ is the corresponding signature grid over

(
FT | T−1G

)
.



Pl-#HyperGragh-Moderate-3-Cover
Input: A planar 3-uniform 3-regular hypergraph G.
Output: The number of subsets of hyperedges that cover every
vertex with no vertex covered three times.

This is exactly the problem Pl-Holant([0, 1, 1, 0]|[1, 0, 0, 1]). By
performing holographic reduction by Hadamard matrix
H =

(
1 1
1 −1

)
, this is the same as Pl-Holant([2, 0, 2, 0]|[3, 0,−1, 0])

since

H⊗3(=3) = H⊗3
[
( 1

0 )
⊗3

+ ( 0
1 )
⊗3
]

= ( 1
1 )
⊗3

+
(

1
−1

)⊗3
= [2, 0, 2, 0]

and

[0, 1, 1, 0](H−1)⊗3 =
1

8

[
(1, 1)⊗3 − (1, 0)⊗3 − (0, 1)⊗3

]
H⊗3

=
1

4
[3, 0,−1, 0].

which can be computed efficiently by matchgates [CC17].



Future work

Extend the technique in this work along with other tricks, a
dichotomy for Holant([x0, x1, x2, x3]| =3) when xi ∈ Q has recently
been proven.

Immediate questions:

I Real or even complex-valued functions?

I F has more than one function?

I Drop the =3 assumption?

I ...



Thank you!
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