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One of the most useful features in DBMS is that one can specify and enforce
Functional Dependencies (FD) on data. In practice, however, data stored might
violate those pre-defined FDs due to various reasons, e.g. during data integra-
tion in a data warehouse [1]. Such database will be called inconsistent. We
ask the following questions: How much should we trust a model prediction when
the training data is inconsistent? In this paper, we study the notion of Certifi-
able Robustness (CR) as a measure of such confidence. Roughly speaking, a
Machine Learning (ML) model is of CR if it classifies/predicts a test point con-
sistently when trained on all possible repairs of the database. Here, a repair is a
maximally consistent subset of the inconsistent database.
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Consider the above database where the FD specified is A — B. Note that there
are 2 x 2 = 4 possible repairs by choosing one of ¢; and t9, and one of ¢3 and t4.
We then visualize the repairs where colors refer to labels. Suppose we employ the
k-Nearest Neighbor Classifiers to predict the label of a test point  where k& = 3,
l.e. take the majority vote among the 3 nearest data points. Assume the distance
metric is the 2-norm in attributes A and B, and x corresponds to the point (0,0).
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We observe that 3-NN will predict the test point to be label 0 (red) in all 4 repairs.
We then say 3-NN is of CR with respect to the test point x for our database. Label
0 is called the certain label for .

Problem Definition

We are thus interested in the following question. Given an inconsistent labeled
iInstance D over an FD schema R and a test point x, is x certifiably robust for k-
NN classification? We denote this problem as CR-NN(R, k). We also consider its
counting version, denoted as # CR-NN(R, k, £), which asks on how many repairs
k-NN will classify x to be the label /.

To state our main results, we need the notion of left-hand-side chain (lhs chain). We say
a set of FDs > has a |hs chain if for every two FDs X; — Y7 and Xy — Y5 in X, either
X1 C X9 o0r X9 C X [2]. For example, the FD set {A — C, B — C'} does not have an |hs
chain, while the FD set {AB — C, B — D} has an lhs chain.

Let R be an FD schema. Our main result asserts the following dichotomy [3]:

« If R is equivalent to an FD schema with an lhs chain, then CR-NN(R) and
#CR-NN(R) can be computed in polynomial time.

 Otherwise, for any integer £ > 1, CR-NN(R, k) is coNP-complete and #CR-NN(R) is
#P-complete.

We design a polynomial time algorithm when FD schema is in the tractable case. The
algorithm is inspired by the OptSRepair algorithm in [4]. When the FD schema is given by a
single primary key, we design a linear-time algorithm which vastly generalizes the SortScan
(SS) and the MinMax (MM) algorithms in [5]. We make a comparison in the following table,
where | D| is the size of the inconsistent database and m is the number of possible labels.

Karlas et al.’s
O(|D| - m) for MM
QD] - (M+EL)) for SS
MM only for m = 2
only under a further restriction on labels

Our algorithm

Time Complexity |  O(|D|-m)

Applicability any k and m

We note that the general algorithm runs in O(n°) for some constant ¢ depending on the
structure of the FD schema. This may hinder practical implementation when c is not small.
See more discussions on this issue under the Open Problems.

A Taste of Hardness

The proof of hardness for decision problem CR-NN(R, k) is a bit involved. That said, we
offer a taste of the hardness proof. One important step IS to view a maximal matching of a
bipartite graph G as a repair of a labeled instance D with FD schema {A — B, B — A}.
This can be seen from the following example. Given a graph, we can associate it with the
database listed on its right side, as illustrated below.
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Therefore, a maximal matching of the graph corresponds to exactly one repair of the
database and vice versa. This can be generalized easily to arbitrary bipartite graphs.

MIN-REPAIR and FORBIDDEN-REPAIR

We consider two variants of OPT-REPAIR [4], called MIN-REPAIR and FORBIDDEN-REPAIR,
and relate them to the CR-NN(R, k) problem. MIN-REPAIR asks one to find the subset
repair that has tuples with the smallest total weight. In FORBIDDEN-REPAIR, one is given
an inconsistent instance D and a subinstance S C D, and is asked to find a subset repair
I C Dsuchthat/ NS = 0.

Note that MIN-REPAIR captures as a special case of FORBIDDEN-REPAIR. We show that
there exists a many-one polynomial time reduction from FORBIDDEN-REPAIR to the comple-
ment of CR-NN- (R, 1).
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CR Under Other Uncertain Models

We also consider CR for three widely used uncertain models.

?-Sets with Size Constraints [6] For a given instance D over the schema,
we mark an uncertain subset D, of the tuples in D. Then, for a pos-
itive integer m > 1, we define the set of possible repairs as: 7, =
{I|D\D, C I C D,|D\I |<m}.

Or-Sets [/, 8] In this uncertain model, each attribute value of a tuple is an or-set
consisting of finite values. Each possible repair in Zyr is formed by choosing
exactly one value from each or-set, independent of the choices across all other
or-sefs.

Codd tables [5] In a Codd table, a missing value is represented as Null paired
with a domain from which that value can be chosen. A repair is any possible
completion of the table.

We give CR-NN(R, k) polynomial time algorithms for all three uncertain models
(the algorithm for ?-sets with size constraints and Codd tables run in linear time).

Open Problems

Many interesting questions remain open at this point. For example, on the theory
side, one can consider CR

« for other widely used classification algorithms, such as decision trees, Naive
Bayes classifiers and linear classifiers.

« when the instance D is not a single table but the join of several tables.
« for other integrity constraints, e.g. inclusion dependencies.
On the practical side, one can consider improving the current result by

- deriving fast heuristic or approximation algorithm for CR-NN(R, k) or
# CR-NN(R, k) (under some assumption on simple FD schema structure).

» deriving fast heuristic or approximation algorithm for (almost uniformly) sam-
pling a repair that predicts a certain label.
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