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Boolean Conjunctive Queries

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . , Rn (y⃗n) .

It is called Boolean if its head is empty. Conjunctive queries capture the Select-
Project-Join (SPJ) expressions in database system. For example,

q(x, y, z) : −R(x, y), S(y, z), T (z, x)

is listing 3-cycles, while

q() : −R(x, y), S(y, z), T (z, x)

is detecting (the existence of) a 3-cycle.

Hypergraphs

For every CQ q, we associate a hypergrpah H to it, where the vertices are vari-
ables and the hyperedges are atoms. For example, the BCQ

q() : −R(x1, x2), S(x2, x3), T (x3, x1)

is associated with
x1

x2 x3

while the BCQ

q() : −R(y1, z1), S(y2, z2), T (y3, z3), U(y1, y2, y3), V (z1, z2, z3)

is associated with

y1

y2

y3

z1

z2

z3

Sum-of-Product over Semiring

Green, Karvounarakis and Tannen observed that database queries can be written
as Sum-of-Product computation over semirings [1].

q () : −R1 (x⃗1) , R2 (x⃗2) , . . . , Rn (x⃗n)

q(I) :=
∨

v:valuation

n∧
i=1

Ri(v (x⃗i))

q(I) :=
⊕

v:valuation

n⊗
i=1

Ri(v (x⃗i))

Then, ({TRUE, FALSE},∨,∧) ↔ set semantics while (N,+, ∗) ↔ bag semantics.
Given an edge-weighted graph G = (V,weight):
Compute

∨
V ′⊆V
|V ′|=k

∧
{v,w}∈V ′

weight({v, w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v,w}∈V ′

weight({v, w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v,w}∈V ′

weight({v, w}) ↔ Minimum k-clique

PANDA

The state-of-the-art algorithm to answre a BCQ is called Proof-Assisted eNtropic Degree-
Aware, or PANDA [2].
Theorem [Abo Khamis, Ngo & Suciu]: Any BCQ q can be solved in time Õ(N subw(q)).
The submodular width of a hypergraph is subw(H) := max

b
min
(T ,χ)

max
t∈V (T )

b(χ(t)).

For example, the submodular width of is 3
2.

Fine-Grained Complexity

An emerging field in theoretical computer science which aims to classify problems according
to their exact running time, or “hardness in easy problems.”
The followings can be found in [3]:
Hypothesis [Lincoln, Vassilevska-Williams & Williams]: Any combinatorial algorithm to de-
tect a k-clique in a graph with n nodes requires nk−o(1) time on a Word RAM model.
Hypothesis [Lincoln, Vassilevska-Williams & Williams]: Any randomized algorithm to find a
k-clique of minimum total edge weight requires nk−o(1) time on a Word RAM model.

Clique Embedding Power

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k] to a non-empty sub-
set ψ(v) ⊆ V such that (1) ∀v, ψ(v) induces a connected subhypergraph and (2) ∀{v, u},
ψ(v), ψ(u) touch in H.
Examples of clique embeddings:
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Below we summarize the clique embedding power and submodular width for some classes
of queries.

emb subw
Acyclic 1 1
Chordal = =
ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2
Aℓ (ℓ− 1)/2 (ℓ− 1)/2
Hℓ,k ℓ/k ℓ/k

Qb 17/9 2
Qhb 7/4 2

Our Main Results

Theorem 1 ([4]) For any H, CSP(H) cannot be computed via a combinatorial algorithm in
time O(|I|emb(H)−ϵ) unless the Combinatorial k-Clique Conjecture is false.

Our reduction is semiring oblivious in the following sense:

Theorem 2 ([4]) For any H, CSP(H) over tropical semiring cannot be computed via any
randomized algorithm in time O(|I|emb(H)−ϵ) unless the Min Weight k-Clique Conjecture is
false.

Proof by Picture

To reduce 5-cycle BCQ to 5-clique, consider the 5-clique-embedding of 5-cycle.
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WLOG, assume the input graph for detecting 5-clique is 5-partite.
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Construct the database instance as follows:
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The 5-clique in the input graph is in one-to-one correspondence to a 5-cycle in
the database instance.
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