The Fine-Grained Complexity of Boolean Conjunctive Queries and Sum-Prod Problems W
 Austen Z. Fan ${ }^{\dagger}$, Paraschos Koutris ${ }^{\dagger}$, Hangdong Zhao ${ }^{\dagger}$

†University of Wisconsin - Madison

Boolean Conjunctive Queries

A conjunctive query q is an expression of the form

$$
q\left(x_{1}, \ldots, x_{k}\right):-R_{1}\left(\vec{y}_{1}\right), \ldots, R_{n}\left(\vec{y}_{n}\right) .
$$

It is called Boolean if its head is empty. Conjunctive queries capture the Select-Project-Join (SPJ) expressions in database system. For example,

$$
q(x, y, z):-R(x, y), S(y, z), T(z, x)
$$

is listing 3 -cycles, while
$q():-R(x, y), S(y, z), T(z, x)$
is detecting (the existence of) a 3-cycle.

Hypergraphs

For every $\mathrm{CQ} q$, we associate a hypergrpah \mathcal{H} to it, where the vertices are variables and the hyperedges are atoms. For example, the BCQ

$$
q():-R\left(x_{1}, x_{2}\right), S\left(x_{2}, x_{3}\right), T\left(x_{3}, x_{1}\right)
$$

is associated with

while the $B C Q$
$q():-R\left(y_{1}, z_{1}\right), S\left(y_{2}, z_{2}\right), T\left(y_{3}, z_{3}\right), U\left(y_{1}, y_{2}, y_{3}\right), V\left(z_{1}, z_{2}, z_{3}\right)$
is associated with

Sum-of-Product over Semiring

Green, Karvounarakis and Tannen observed that database queries can be written as Sum-of-Product computation over semirings [1].

$$
\begin{aligned}
& q():-R_{1}\left(\vec{x}_{1}\right), R_{2}\left(\vec{x}_{2}\right), \ldots, R_{n}\left(\vec{x}_{n}\right) \\
& q(I):=\bigvee_{v: \text { :valuation }} \bigwedge_{i=1}^{n} R_{i}\left(v\left(\vec{x}_{i}\right)\right) \\
& q(I):=\bigoplus_{v: \text { valuation }} \bigotimes_{i=1}^{n} R_{i}\left(v\left(\vec{x}_{i}\right)\right)
\end{aligned}
$$

Then, ($\{$ True, FALSE $\}, \vee, \wedge$) \leftrightarrow set semantics while $(\mathbb{N},+, *) \leftrightarrow$ bag semantics Given an edge-weighted graph $G=(V$, weight):
Compute $\bigvee_{V^{\prime} \subset V\{v, w\} \in V^{\prime}} \bigwedge_{\text {weight }}(\{v, w\}) \leftrightarrow$ Boolean k-clique
Compute $\sum_{V^{\prime}=V} \prod_{\{v\} \in V^{\prime}}$ weight $(\{v, w\}) \leftrightarrow$ Counting k-Clique
Compute $\min _{V^{\prime} \subseteq V}^{\left|V^{\prime}\right|=k} \mid \sum_{\{v, w\} \in V^{\prime}}$ weight $(\{v, w\}) \leftrightarrow$ Minimum k-clique
PANDA
The state-of-the-art algorithm to answre a $B C Q$ is called Proof-Assisted eNtropic Degree-
Aware, or PANDA [2].
Theorem [Abo Khamis, Ngo \& Suciu]: Any $B C Q q$ can be solved in time $\tilde{O}\left(N^{\text {subuw }(q))}\right.$.
The submodular width of a hypergraph is subw $(\mathcal{H}):=\max _{b}^{\min , \chi)} \max _{t \in V(\mathcal{T})} b(\chi(t))$.
For example, the submodular width of \square is $\frac{3}{2}$.

Fine-Grained Complexity

An emerging field in theoretical computer science which aims to classify problems according o their exact running time, or "hardness in easy problems."
he followings can be found in [3]
Hypothesis [Lincoln, Vassilevska-Williams \& Williams]: Any combinatorial algorithm to detect a k-clique in a graph with n nodes requires $n^{k-o(1)}$ time on a Word RAM model. Hypothesis [Lincoln, Vassilevska-Williams \& Williams]: Any randomized algorithm to find a Hypothesis Lincoln, Vassilevska-Wiliams \& Wiliamss: Any randomized algorithm to
k-clique of minimum total edge weight requires $n^{k-o(1)}$ time on a Word RAM model.

Clique Embedding Power

A k-clique embedding from C_{k} to \mathcal{H} is a mapping ψ from $v \in[k]$ to a non-empty subset $\psi(v) \subseteq \mathcal{V}$ such that (1) $\forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall\{v, u\}$, $\psi(v), \psi(u)$ touch in \mathcal{H}.
Examples of clique embeddings:

1,4	
2,3	
$1-3$	

Below we summarize the clique embedding power and submodular width for some classes of queries.

	emb	subw
Acyclic	1	1
Chordal		$=$
ℓ-cycle	$2-1 / \Gamma \ell / 2\rceil$	$2-1 /\lceil\ell / 2\rceil$
$K_{2, \ell}$	$2-1 / \ell$	$2-1 / \ell$
$K_{3,3}$	2	2
A_{ℓ}	$(\ell-1) / 2$	$(\ell-1) / 2$
$\mathcal{H}_{\ell, k}$	ℓ / k	ℓ / k
Q_{b}	$17 / 9$	2
$Q_{h b}$	$7 / 4$	2

Our Main Results

Theorem 1 ([4]) For any $\mathcal{H}, \operatorname{CSP}(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O\left(|I|^{\mathrm{emb}}(\mathcal{H})-\epsilon\right)$ unless the Combinatorial k-Clique Conjecture is false.
Our reduction is semiring oblivious in the following sense:
Theorem 2 ([4]) For any $\mathcal{H}, \operatorname{CSP}(\mathcal{H})$ over tropical semiring cannot be computed via any randomized algorithm in time $O\left(|I|^{\text {emb }}(\mathcal{H})-\epsilon\right)$ unless the Min Weight k-Clique Conjecture is false.

Proof by Picture

To reduce 5 -cycle BCQ to 5 -clique, consider the 5 -clique-embedding of 5 -cycle.

WLOG, assume the input graph for detecting 5 -clique is 5 -partite.

Construct the database instance as follows:

The 5-clique in the input graph is in one-to-one correspondence to a 5 -cycle in the database instance.

Acknowledgements

This research was supported in part by National Science Foundation grant IIS 1910014.

References

[1] Todd J. Green, Gregory Karvounarakis, and Val Tannen. "Provenance semirings". In: PODS. ACM, 2007, pp. 31-40.
[2] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. "What Do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog Have to Do with One Another?" In: PODS. ACM, 2017, pp. 429-444.
[3] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. "Tight Hardness fo
Shortest Cycles and Paths in sparse Graphs" In. SODA SIAM 2018 Shortest Cycles and Paths in Sparse Graphs". In: SODA. SIAM, 2018, pp. 1236-1252
[4] Austen Z. Fan, Paraschos Koutris, and Hangdong Zhao. "The Fine-Grained Complexity of Boolean Conjunctive Queries and Sum-Product Problems". In: ICALP. Vol. 261. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 127:1-127:20.

