State-of-the-Art Join Algorithms in Database (Theory) and Lower Bounds from Fine-Grained Complexity

Austen Z. Fan Paraschos Koutris Hangdong Zhao

University of Wisconsin-Madison

DB Affiliates Workshop Oct 11, 2023

Outline

Vocabularies

Acyclicity takes it all. - Yannakakis Algorithm

How is that different from a tree? - Worst-Case Optimal Join

Always have a plan B! - PANDA

Can we do better? - Lower Bounds from Fine-Grained Complexity

Vocabularies

Acyclicity takes it all. – Yannakakis Algorithm

How is that different from a tree? - Worst-Case Optimal Join

Always have a plan B! – PANDA

Can we do better? - Lower Bounds from Fine-Grained Complexity

(Select-)Project-Join = Conjunctive Query

(Select-)Project-Join = Conjunctive Query

$$q(x_1,\ldots,x_k):-R_1(\vec{y_1}),\ldots,R_n(\vec{y_n}).$$

```
({\sf Select-}){\sf Project-Join} = {\sf Conjunctive} \; {\sf Query}
```

$$q(x_1,\ldots,x_k):-R_1(\vec{y_1}),\ldots,R_n(\vec{y_n}).$$

 $({\sf Select-}){\sf Project-Join} = {\sf Conjunctive} \; {\sf Query}$

$$q(x_1,\ldots,x_k):-R_1(\vec{y_1}),\ldots,R_n(\vec{y_n}).$$

Example

Listing 3-cycles

 $({\sf Select-}){\sf Project-Join} = {\sf Conjunctive} \; {\sf Query}$

$$q(x_1,\ldots,x_k):-R_1(\vec{y_1}),\ldots,R_n(\vec{y_n}).$$

Example

Listing 3-cycles SELECT t1.A, t1.B, t2.C FROM Table1 t1 JOIN Table2 t2 ON t1.B = t2.B JOIN Table3 t3 ON t2.C = t3.C AND t1.A = t3.A;

 $({\sf Select-}){\sf Project-Join} = {\sf Conjunctive} \; {\sf Query}$

$$q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).$$

```
Listing 3-cycles

SELECT t1.A, t1.B, t2.C

FROM Table1 t1

JOIN Table2 t2 ON t1.B = t2.B

JOIN Table3 t3 ON t2.C = t3.C AND t1.A = t3.A;

\iff

q(x, y, z) : -R(x, y), S(y, z), T(z, x)
```

For every CQ q, we associate a *(hyper-)graph* \mathcal{H}_q to it, where the vertices are variables and the (hyper-)edges are atoms.

For every CQ q, we associate a *(hyper-)graph* \mathcal{H}_q to it, where the vertices are variables and the (hyper-)edges are atoms.

For every CQ q, we associate a *(hyper-)graph* \mathcal{H}_q to it, where the vertices are variables and the (hyper-)edges are atoms.

$$q(x,y,z):-R(x,y),S(y,z),T(z,x)$$

For every CQ q, we associate a *(hyper-)graph* \mathcal{H}_q to it, where the vertices are variables and the (hyper-)edges are atoms.

$$q(x, y, z) : -R(x, y), S(y, z), T(z, x)$$

Vocabularies

Acyclicity takes it all. - Yannakakis Algorithm

How is that different from a tree? - Worst-Case Optimal Join

Always have a plan B! – PANDA

Can we do better? - Lower Bounds from Fine-Grained Complexity

Theorem (Yannakakis, 81')

If H_q is acyclic, then we can evaluate q in linear time $O(|\ln| + |\text{Out}|)$.

Theorem (Yannakakis, 81')

If H_q is acyclic, then we can evaluate q in linear time $O(|\ln| + |\text{Out}|)$.

Example

Listing 2-paths

Theorem (Yannakakis, 81')

If H_q is acyclic, then we can evaluate q in linear time $O(|\ln| + |\text{Out}|)$.

Example

Listing 2-paths SELECT t1.A, t1.B, t2.C FROM Table1 t1 JOIN Table2 t2 ON t1.B = t2.B;

Theorem (Yannakakis, 81')

If H_q is acyclic, then we can evaluate q in linear time $O(|\ln| + |\text{Out}|)$.

```
Listing 2-paths
SELECT t1.A, t1.B, t2.C
FROM Table1 t1
JOIN Table2 t2 ON t1.B = t2.B;
\iff
q(x, y, z) : -R(x, y), S(y, z)
```

Theorem (Yannakakis, 81')

If H_q is acyclic, then we can evaluate q in linear time $O(|\ln| + |\text{Out}|)$.

Example

Listing 2-paths SELECT t1.A, t1.B, t2.C FROM Table1 t1 JOIN Table2 t2 ON t1.B = t2.B; \iff q(x, y, z) : -R(x, y), S(y, z)

Theorem (Yannakakis, 81')

If H_q is acyclic, then we can evaluate q in linear time $O(|\ln| + |\text{Out}|)$.

Example

Listing 2-paths SELECT t1.A, t1.B, t2.C FROM Table1 t1 JOIN Table2 t2 ON t1.B = t2.B; \iff q(x, y, z) : -R(x, y), S(y, z) $x \quad y \quad z$ $R \quad S$

Example

 $q(\vec{\mathbf{x}}) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_3, x_5)$

Example

 $q(\vec{\mathbf{x}}) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_3, x_5)$

Example

 $q(\vec{\mathbf{x}}) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_3, x_5)$

Definition (Join Tree)

A *join tree* for a CQ q is a tree T whose vertices are the atoms in q such that, for any pair of atoms R, S, all variables common to R and S occur on the unique path connecting R and S.

Example

 $q(\vec{\mathbf{x}}) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_3, x_5)$

Definition (Join Tree)

A *join tree* for a CQ q is a tree T whose vertices are the atoms in q such that, for any pair of atoms R, S, all variables common to R and S occur on the unique path connecting R and S.

Theorem (Yannakakis, 81')

If a CQ q has a join tree, then we can evaluate q in linear time $O(|\ln| + |Out|)$.

Vocabularies

Acyclicity takes it all. – Yannakakis Algorithm

How is that different from a tree? - Worst-Case Optimal Join

Always have a plan B! – PANDA

Can we do better? - Lower Bounds from Fine-Grained Complexity

Example

q(x, y) : -R(x, y), S(y, z), given |R| = |S| = N, what's the worst-case output size?

Example

q(x, y) : -R(x, y), S(y, z), given |R| = |S| = N, what's the worst-case output size? $O(N^2)$, fine.

Example

q(x, y) : -R(x, y), S(y, z), given |R| = |S| = N, what's the worst-case output size? $O(N^2)$, fine. q(x, y, z) : -R(x, y), S(y, z), T(z, x), given |R| = |S| = |T| = N, what's the worst-case output size?

Example

q(x, y) : -R(x, y), S(y, z), given |R| = |S| = N, what's the worst-case output size? $O(N^2)$, fine. q(x, y, z) : -R(x, y), S(y, z), T(z, x), given |R| = |S| = |T| = N, what's the worst-case output size? $O(N^3)$?

Example

q(x, y) : -R(x, y), S(y, z), given |R| = |S| = N, what's the worst-case output size? $O(N^2)$, fine. q(x, y, z) : -R(x, y), S(y, z), T(z, x), given |R| = |S| = |T| = N, what's the worst-case output size? $O(N^3)$? No, it's $O(N^{\frac{3}{2}})$!

Example

q(x, y) : -R(x, y), S(y, z), given |R| = |S| = N, what's the worst-case output size? $O(N^2)$, fine. q(x, y, z) : -R(x, y), S(y, z), T(z, x), given |R| = |S| = |T| = N, what's the worst-case output size? $O(N^3)$? No, it's $O(N^{\frac{3}{2}})$!

Theorem (AGM Bound)

The worst-case output size of q is bounded by $N^{\rho^*(\mathcal{H}_q)}$, where ρ^* is the fractional edge cover.

Example

q(x, y) : -R(x, y), S(y, z), given |R| = |S| = N, what's the worst-case output size? $O(N^2)$, fine. q(x, y, z) : -R(x, y), S(y, z), T(z, x), given |R| = |S| = |T| = N, what's the worst-case output size? $O(N^3)$? No, it's $O(N^{\frac{3}{2}})$!

Theorem (AGM Bound)

The worst-case output size of q is bounded by $N^{\rho^*(\mathcal{H}_q)}$, where ρ^* is the fractional edge cover.

Heavy-Light-Split Query Plan

Example (Listing Triangles)

Example (Listing Triangles)

Call a vertex *heavy* if its degree $\geq \sqrt{N}$ and *light* otherwise.

Example (Listing Triangles)

Call a vertex *heavy* if its degree $\geq \sqrt{N}$ and *light* otherwise.

Directed 2-paths with intermediate vertices being light:

Example (Listing Triangles)

Call a vertex *heavy* if its degree $\geq \sqrt{N}$ and *light* otherwise.

Directed 2-paths with intermediate vertices being light: there are $N \cdot \sqrt{N}$ many and they can be found in $O(N \cdot \sqrt{N}) = O(N^{\frac{3}{2}})$ time. For each such path, check whether the endpoints are connected.

Example (Listing Triangles)

Call a vertex *heavy* if its degree $\geq \sqrt{N}$ and *light* otherwise.

Directed 2-paths with intermediate vertices being light: there are $N \cdot \sqrt{N}$ many and they can be found in $O(N \cdot \sqrt{N}) = O(N^{\frac{3}{2}})$ time. For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy:

Example (Listing Triangles)

Call a vertex *heavy* if its degree $\geq \sqrt{N}$ and *light* otherwise.

Directed 2-paths with intermediate vertices being light: there are $N \cdot \sqrt{N}$ many and they can be found in $O(N \cdot \sqrt{N}) = O(N^{\frac{3}{2}})$ time. For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most $\frac{2N}{\sqrt{N}} = O(\sqrt{N})$ many heavy vertices. Construct the $O(\sqrt{N})$ -by- $O(\sqrt{N})$ matrix and use matrix multiplication to find in $O((\sqrt{N})^3) = O(N^{\frac{3}{2}})$ time.

Example (Listing Triangles)

Call a vertex *heavy* if its degree $\geq \sqrt{N}$ and *light* otherwise.

Directed 2-paths with intermediate vertices being light: there are $N \cdot \sqrt{N}$ many and they can be found in $O(N \cdot \sqrt{N}) = O(N^{\frac{3}{2}})$ time. For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most $\frac{2N}{\sqrt{N}} = O(\sqrt{N})$ many heavy vertices. Construct the $O(\sqrt{N})$ -by- $O(\sqrt{N})$ matrix and use matrix multiplication to find in $O((\sqrt{N})^3) = O(N^{\frac{3}{2}})$ time.

Theorem (WCOJ by Ngo, Porat, Ré & Rudra, 12')

Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H}_q)})$.

Example

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where \mathcal{T} is a tree and $\chi : V(\mathcal{T}) \to 2^{\mathcal{V}}$, such that (1) $\forall e \in \mathcal{E}$ is a subset for some $\chi(t), t \in V(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}$ is a non-empty connected sub-tree of \mathcal{T} .

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where \mathcal{T} is a tree and $\chi : V(\mathcal{T}) \to 2^{\mathcal{V}}$, such that (1) $\forall e \in \mathcal{E}$ is a subset for some $\chi(t), t \in V(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}$ is a non-empty connected sub-tree of \mathcal{T} .

Just ensemble tables into bags, run WCOJ on each bag and then run Yannakakis on those bags!

Vocabularies

Acyclicity takes it all. - Yannakakis Algorithm

How is that different from a tree? - Worst-Case Optimal Join

Always have a plan B! - PANDA

Can we do better? - Lower Bounds from Fine-Grained Complexity

Example

Example

The 4-cycle query

has two tree decompositions:

Example

The 4-cycle query

has two tree decompositions:

Which one to use?

Example

The 4-cycle query

has two tree decompositions:

Which one to use? It depends?

Example

The 4-cycle query

has two tree decompositions:

Which one to use? It depends? Use two decompositions at the same time!

Example (4-Cycle)

Example (4-Cycle)

Using one tree decomposition $\rightarrow O(N^2)$.

Example (4-Cycle)

Using one tree decomposition $\rightarrow O(N^2)$. Using two tree decompositions $\rightarrow O(N^{\frac{3}{2}})!$

Example (4-Cycle)

Using one tree decomposition $\rightarrow O(N^2)$. Using two tree decompositions $\rightarrow O(N^{\frac{3}{2}})!$ Technicality: partition the join in such a way that every output is covered by at least one query plan!

Example (4-Cycle)

Using one tree decomposition $\rightarrow O(N^2)$. Using two tree decompositions $\rightarrow O(N^{\frac{3}{2}})!$ Technicality: partition the join in such a way that every output is covered by at least one query plan!

Theorem (SOTA PANDA, Abo Khamis, Ngo & Suciu, 16')

Any full q can be computed in time $\tilde{O}(N^{\text{subw}(q)} + |Out|)$.

Example (4-Cycle)

Using one tree decomposition $\rightarrow O(N^2)$. Using two tree decompositions $\rightarrow O(N^{\frac{3}{2}})!$ Technicality: partition the join in such a way that every output is covered by at least one query plan!

Theorem (SOTA PANDA, Abo Khamis, Ngo & Suciu, 16')

Any full q can be computed in time $\tilde{O}(N^{subw(q)} + |Out|)$.

Lemma (Marx, 10')

For any hypergraph \mathcal{H} , subw $(\mathcal{H}) \leq \text{fhtw}(\mathcal{H})$.

Vocabularies

Acyclicity takes it all. – Yannakakis Algorithm

How is that different from a tree? - Worst-Case Optimal Join

Always have a plan B! – PANDA

Can we do better? - Lower Bounds from Fine-Grained Complexity

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, I guess I'm just too dumb."

"I can't find an efficient algorithm, because no such algorithm is possible!"

"I can't find an efficient algorithm, but neither can all these famous people."

Lower Bounds

Lower Bounds

Theorem (Fan, Koutris & Zhao, 23')

Any q cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H}_q)-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Lower Bounds

Theorem (Fan, Koutris & Zhao, 23')

Any q cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H}_q)-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

	emb	subw
Acyclic	1	1
Chordal	=	=
<i>ℓ</i> -cycle	$2-1/\lceil \ell/2 \rceil$	$2-1/\lceil \ell/2 ceil$
$K_{2,\ell}$	$2-1/\ell$	$2-1/\ell$
K _{3,3}	2	2
A_ℓ	$(\ell - 1)/2$	$(\ell-1)/2$
$\mathcal{H}_{\ell,k}$	ℓ/k	ℓ/k
Q _b	17/9	2
Q _{hb}	7/4	2

Table: Embedding power and submodular width for some query classes

Summary

Vocabularies

Acyclicity takes it all. - Yannakakis Algorithm

How is that different from a tree? - Worst-Case Optimal Join

Always have a plan B! – PANDA

Can we do better? - Lower Bounds from Fine-Grained Complexity

Thank You!

References I

- Albert Atserias, Martin Grohe, and Dániel Marx, Size bounds and query plans for relational joins, SIAM J. Comput. 42 (2013), no. 4, 1737–1767.
- Austen Z. Fan, Paraschos Koutris, and Hangdong Zhao, The fine-grained complexity of boolean conjunctive queries and sum-product problems, ICALP, LIPIcs, vol. 261, Schloss Dagstuhl Leibniz-Zentrum für Informatik, 2023, pp. 127:1–127:20.
- M. R. Garey and David S. Johnson, *Computers and intractability: A guide to the theory of np-completeness*, W. H. Freeman, 1979.

References II

- Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu, What do shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another?, PODS, ACM, 2017, pp. 429–444.
- Dániel Marx, Tractable hypergraph properties for constraint satisfaction and conjunctive queries, J. ACM 60 (2013), no. 6, 42:1–42:51.
- Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra, Worst-case optimal join algorithms, J. ACM 65 (2018), no. 3, 16:1–16:40.
- Mihalis Yannakakis, *Algorithms for acyclic database schemes*, VLDB, IEEE Computer Society, 1981, pp. 82–94.