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Yannakakis Algorithm
Theorem (Yannakakis, 81')

If Hq is acyclic, then we can evaluate q in linear time
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Theorem (Yannakakis, 81')
If Hq is acyclic, then we can evaluate q in linear time
O(|In| +|Out|).
Example

Listing 2-paths

SELECT tl1.A, t1.B, t2.C

FROM Tablel t1

JOIN Table2 t2 ON t1.B = t2.B;

<
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Yannakakis Algorithm, Formal Version
Example
q(i) . _R(X17X2)7 S(X27X3)7 T(X37X4)) U(X37X5)

v
R S

Definition (Join Tree)

A join tree for a CQ g is a tree 7 whose vertices are the atoms in
g such that, for any pair of atoms R, S, all variables common to R
and S occur on the unique path connecting R and S.

Theorem (Yannakakis, 81')
If a CQ q has a join tree, then we can evaluate q in linear time

O(|In| + | Out ).
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Theorem (AGM Bound)

The worst-case output size of q is bounded by NP"(*a) where p*is
the fractional edge cover.

6/12



AGM Bound

Example

qa(x,y) : —R(x,y),S(y, z), given |R| = |S| = N, what's the
worst-case output size? O(N?), fine.
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The worst-case output size of q is bounded by NP"(*a) where p*is
the fractional edge cover.
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N
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Heavy-Light-Split Query Plan

Example (Listing Triangles)
Call a vertex heavy if its degree > /N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

3
N -+ N many and they can be found in O(N - vN) = O(N2) time.
For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most

\2/—% = O(v/N) many heavy vertices. Construct the

O(v/N)-by-O(v/N) matrix and use matrix multiplication to find in
O((v/N)3) = O(N2) time.

Theorem (WCOJ by Ngo, Porat, Ré & Rudra, 12')
Any full CQ q can be computed in time O(N?"(*a)).
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Definition (Tree Decomposition)

A tree decomposition of H = (V,E) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V theset {t | v € x(t)} is a
non-empty connected sub-tree of 7T .
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Tree Decomposition

Example

ABC

AD C
A tree decomposition for D ¢ is

Tree decomposition = Query plan

Definition (Tree Decomposition)

A tree decomposition of H = (V, ) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V theset {t | v € x(t)} is a
non-empty connected sub-tree of 7T .

Just ensemble tables into bags, run WCOJ on each bag and
then run Yannakakis on those bags!
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Two is better than one
Example

The 4-cycle query

A B
D C
has two tree decompositions:
ABC B AD
ADC B CD

Which one to use? It depends?

Use two decompositions at the same time!
9/12
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PANDA

Example (4-Cycle)

Using one tree decomposition — O(N?).

Using two tree decompositions — O(N%)!

Technicality: partition the join in such a way that every
output is covered by at least one query plan!

Theorem (SOTA PANDA, Abo Khamis, Ngo & Suciu, 16")
Any full g can be computed in time O(Ns"®¥(9) 1 |Out|) .

Lemma (Marx, 10')
For any hypergraph H, subw(H) < fhtw(H).
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“I can’t find an efficient algorithm, I guess I'm just too dumb.™
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“I can’t find an efficient algorithm, because no such algorithm is possible!”

ML LL L L

*I can’t find an efficient algorithm, but neither can all these famous people.” 11/12
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Lower Bounds
Theorem (Fan, Koutris & Zhao, 23')

Any q cannot be computed via a combinatorial algorithm in time
O(|/|emb(*a)=€) unless the Combinatorial k-Clique Conjecture is

false.
emb subw

Acyclic | 1 1
Chordal | = =
l-cycle | 2—1/[¢/2] | 2—1/[¢/2]
Kot 2—-1/0 2—-1/0
K33 2 2
Ar (-1)/2 | (£-1)/2
Hok l/k l/k
Qp 17/9 2
Qb 7/4 2

Table: Embedding power and submodular width for some query classes
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