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Vocabularies, I

(Select-)Project-Join = Conjunctive Query

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

Example

Listing 3-cycles
SELECT t1.A, t1.B, t2.C
FROM Table1 t1
JOIN Table2 t2 ON t1.B = t2.B
JOIN Table3 t3 ON t2.C = t3.C AND t1.A = t3.A;
⇐⇒
q(x , y , z) : −R(x , y),S(y , z),T (z , x)
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Vocabularies, II

For every CQ q, we associate a (hyper-)graph Hq to it, where the
vertices are variables and the (hyper-)edges are atoms.

Example

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

x

y z
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Yannakakis Algorithm

Theorem (Yannakakis, 81’)

If Hq is acyclic, then we can evaluate q in linear time
O(| In |+ |Out |).

Example

Listing 2-paths
SELECT t1.A, t1.B, t2.C
FROM Table1 t1
JOIN Table2 t2 ON t1.B = t2.B;
⇐⇒
q(x , y , z) : −R(x , y),S(y , z)

x y z

R S
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Yannakakis Algorithm, Formal Version

Example

q(⃗x) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a CQ q has a join tree, then we can evaluate q in linear time
O(| In |+ |Out |).
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AGM Bound

Example

q(x , y) : −R(x , y),S(y , z), given |R| = |S | = N, what’s the
worst-case output size?

O(N2), fine.
q(x , y , z) : −R(x , y),S(y , z),T (z , x), given |R| = |S | = |T | = N,

what’s the worst-case output size? O(N3)? No, it’s O(N
3
2 )!

Theorem (AGM Bound)

The worst-case output size of q is bounded by Nρ∗(Hq), where ρ∗ is
the fractional edge cover.

Example

1
2

1
2

1
2

6 / 12



AGM Bound

Example

q(x , y) : −R(x , y),S(y , z), given |R| = |S | = N, what’s the
worst-case output size? O(N2), fine.

q(x , y , z) : −R(x , y),S(y , z),T (z , x), given |R| = |S | = |T | = N,

what’s the worst-case output size? O(N3)? No, it’s O(N
3
2 )!

Theorem (AGM Bound)

The worst-case output size of q is bounded by Nρ∗(Hq), where ρ∗ is
the fractional edge cover.

Example

1
2

1
2

1
2

6 / 12



AGM Bound

Example

q(x , y) : −R(x , y),S(y , z), given |R| = |S | = N, what’s the
worst-case output size? O(N2), fine.
q(x , y , z) : −R(x , y),S(y , z),T (z , x), given |R| = |S | = |T | = N,

what’s the worst-case output size?

O(N3)? No, it’s O(N
3
2 )!

Theorem (AGM Bound)

The worst-case output size of q is bounded by Nρ∗(Hq), where ρ∗ is
the fractional edge cover.

Example

1
2

1
2

1
2

6 / 12



AGM Bound

Example

q(x , y) : −R(x , y),S(y , z), given |R| = |S | = N, what’s the
worst-case output size? O(N2), fine.
q(x , y , z) : −R(x , y),S(y , z),T (z , x), given |R| = |S | = |T | = N,

what’s the worst-case output size? O(N3)?

No, it’s O(N
3
2 )!

Theorem (AGM Bound)

The worst-case output size of q is bounded by Nρ∗(Hq), where ρ∗ is
the fractional edge cover.

Example

1
2

1
2

1
2

6 / 12



AGM Bound

Example

q(x , y) : −R(x , y),S(y , z), given |R| = |S | = N, what’s the
worst-case output size? O(N2), fine.
q(x , y , z) : −R(x , y),S(y , z),T (z , x), given |R| = |S | = |T | = N,

what’s the worst-case output size? O(N3)? No, it’s O(N
3
2 )!

Theorem (AGM Bound)

The worst-case output size of q is bounded by Nρ∗(Hq), where ρ∗ is
the fractional edge cover.

Example

1
2

1
2

1
2

6 / 12



AGM Bound

Example

q(x , y) : −R(x , y),S(y , z), given |R| = |S | = N, what’s the
worst-case output size? O(N2), fine.
q(x , y , z) : −R(x , y),S(y , z),T (z , x), given |R| = |S | = |T | = N,

what’s the worst-case output size? O(N3)? No, it’s O(N
3
2 )!

Theorem (AGM Bound)

The worst-case output size of q is bounded by Nρ∗(Hq), where ρ∗ is
the fractional edge cover.

Example

1
2

1
2

1
2

6 / 12



AGM Bound

Example

q(x , y) : −R(x , y),S(y , z), given |R| = |S | = N, what’s the
worst-case output size? O(N2), fine.
q(x , y , z) : −R(x , y),S(y , z),T (z , x), given |R| = |S | = |T | = N,

what’s the worst-case output size? O(N3)? No, it’s O(N
3
2 )!

Theorem (AGM Bound)

The worst-case output size of q is bounded by Nρ∗(Hq), where ρ∗ is
the fractional edge cover.

Example

1
2

1
2

1
2

6 / 12



Heavy-Light-Split Query Plan

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2 ) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2 ) time.

Theorem (WCOJ by Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(Hq)).
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Tree Decomposition

Example

A tree decomposition for

A B

CD
is

A B C

A D C

Tree decomposition = Query plan

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T ) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T ) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Just ensemble tables into bags, run WCOJ on each bag and
then run Yannakakis on those bags!
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How is that different from a tree? – Worst-Case Optimal Join

Always have a plan B! – PANDA

Can we do better? – Lower Bounds from Fine-Grained Complexity
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Two is better than one

Example

The 4-cycle query

A B

CD

has two tree decompositions:

A B C

A D C

B A D

B C D

Which one to use? It depends?
Use two decompositions at the same time!
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PANDA

Example (4-Cycle)

Using one tree decomposition → O(N2).

Using two tree decompositions → O(N
3
2 )!

Technicality: partition the join in such a way that every
output is covered by at least one query plan!

Theorem (SOTA PANDA, Abo Khamis, Ngo & Suciu, 16’)

Any full q can be computed in time Õ(Nsubw(q) + |Out|) .

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).
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Lower Bounds

Theorem (Fan, Koutris & Zhao, 23’)

Any q cannot be computed via a combinatorial algorithm in time
O(|I |emb(Hq)−ϵ) unless the Combinatorial k-Clique Conjecture is
false.

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 17/9 2

Qhb 7/4 2

Table: Embedding power and submodular width for some query classes
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Summary

Vocabularies

Acyclicity takes it all. – Yannakakis Algorithm

How is that different from a tree? – Worst-Case Optimal Join

Always have a plan B! – PANDA

Can we do better? – Lower Bounds from Fine-Grained Complexity
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Thank You!
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