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Counting Problem

Given a Boolean formula
Decision: is there a satisfying assignment ¢?

Counting: how many satisfying assignments ¢ are there?



Holant Framework

Trace back to Valiant's holographic transformation [Val06]

Capture many counting problems in a natural way, e.g. counting
perfect matchings

Provably more expressive than #CSP [FLS07]

Long line of research showing dichotomies in Holant framework
[KC16, CGW16, Bacl8]



Holant problem

Input: any signature grid Q = (G, F,n) where G = (V,E) is a
graph, F is a set of functions [g]X — C, and 7 is a mapping from
the vertex set V to F.

Output: the Holant value Holantg = Z H f(o|E(v)) where o is

a mapping E — [q], f,(:) :=7(v) € .7-" and E(v) denotes the set
of incident edges of v.



Holant problem; example

Example

Let g = {0,1} and F = {AT-MOST-ONE}, then Holantg counts
the number of matchings.

Example

Let g={0,1,...,k— 1} and F = {ALL-DISTINCT }, then
Holantq counts the number of proper edge colorings using at most
k colors.



Dichotomy results in Holant framework

Dichotomy says a problem is either tractable or #P-complete,
despite Ladner’s theorem (counting version).

See Guo and Lu's survey On the Complexity of Holant Problems;
Cai and Chen's book Complexity Dichotomies for Counting
Problems; Shuai's thesis Complexity Classification of Counting
Problems on Boolean Variables for more information.



Dichotomy results in Holant framework; example

Theorem (Cai, Guo, Williams; 2012)

A Holant problem over an arbitrary set of complex-valued
symmetric constraint functions J on Boolean variables is
#P-complete unless:

» every function in F has arity at most two;
» F is transformable to an affine type;

> F is transformable to a product type;
>

F is vanishing, combined with the right type of binary
functions;

» F belongs to a special category of vanishing type Fibonacci
gates.

in which the Holant value can be computed in polynomial time.



Bipartite Holant problem

Restrict underlying graph to be bipartite.

Input: any signature grid Q = (G, F,G, ) where G = (V,U,E) is
a bipartite graph, F and G are two sets of functions [q]* — C, and
7 is a mapping from the vertex set V U U to F UG such that
m(V) C Fand 7(U) CG.

Output: Holantg = > [] f(o]g()) H 8u(0|E(u)) where o is a
o veV

mapping E — [q], f,(-) :==w(v) € F, gu( ) :=m(u) € G, and E(v)
denotes the set of incident edges of v.



#CSP

Fix a domain D = {1,2,...,d} and a set of complex-valued
functions F = {f, fa,...,fy} where f; : D" — C for some r;.
Input: a tuple x = (xi, ..., x,) of variables over D and a collection
| of tuples (f,i1,...,i) in which f is an r-ary function from F and
My...,lp € [n]

Output: the partition function Z(I) := 3" _pa Fi(x) where
Fi(x) :== H(f,il,...,i,)el £ (Xigs oo Xi,)

Observe this is the bipartite Holant problem with F on one side
and EQUALITY:= {= for all k € N} on the other side!



Our main result

We initiate the study of Holant problems on bipartite graphs.

Specifically, We prove a dichotomy result on a class of 3-regular
bipartite graph Holant problem, namely Holant(f| =3) where f is
an arbitrary rational symmetric Boolean constraint function and
=3 is the EQUALITY3 function.

This is the most basic yet non-trivial bipartite setting and our
result is a mere starting point for understanding bipartite Holant
problems. Almost every generalization is an open problem at this
point.

Theorem (Cai, F. & Liu)

The problem Holant{ [fo, f1, 2, f3] | (=3)} with f; € Q
(i=0,1,2,3) is #P-hard unless the signature [fy, f1, f2, 3] is
degenerate, Gen-Eq or belongs to the affine class.



New phenomenon

We discover a set F with the property that for every f € F the
problem Holant (f |=3) is planar P-time computable but #P-hard
in general, yet its planar tractability is by a combination of a
holographic transformation by Hadamard matrix H = H fl] to
FKT together with an independent global argument.

Lemma (Cai, F. & Liu)

The problem Holant ([3a+ b,—a — b, —a+ b,3a — b| |=3) is
computable in polynomial time on planar graphs for all a, b, but is
#P-hard on general graphs for all a # 0.



Why remarkable?

Proof.

The following equivalence is by holographic transformation:

Holant (f | (=3))

Holant (fH®3 | (H~1)®3(=

Holant ([0, 0, a, b] | [1,0, 1,0]
Holant ([0, 0, a,0] | [0, 0,1, 0]
Holant ([0, 2,0, 0] | [0,1,0 0]
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where the last line is (up to a global nonzero factor) the perfect

matching problem on 3-regular bipartite graphs. This problem is

computable in polynomial time on planar graphs and #P-hard on
general graphs.



Why remarkable?

For counting CSP problems over Boolean variables, all problems
that are #P-hard in general but P-time tractable on planar graphs
are tractable by the following universal algorithmic strategy: a
holographic transformation to matchgates followed by the FKT
algorithm [CLX10].

On the other hand, for (non-bipartite) Holant problems with
arbitrary symmetric signature sets, this category of problems
(planar tractable but #P-hard in general) is completely
characterized by two types [CFGW15] : (1) holographic
transformations to matchgates, and (2) a separate kind that
depends on the existence of “a wheel structure” (unrelated to
holographic transformations and matchgates).

Here we have found the first instance where a new type has
emerged!



Main obstacle |

When the graph is bipartite and r-regular, there is a number
theoretic limitation as to what types of gadgets one can possibly
construct.
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Figure: Mathematica™ computation when iterating previous gadget



Main obstacle |1l

We overcome this obstacle by utilizing a novel technique of
Interpolating degenerate straddled bipartite function and splitting
them into unary functions.



Proof flowchart
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Future work

We believe our dichotomy is valid even for (algebraic) real or
complex-valued constraint functions. However, in this paper we
can only prove it for rational-valued constraint functions.

Other immediate questions:
» Drop the =3 assumption?
» Include more than one constraint function on either side?

» Other regularity parameter r?
> .



Thank You!
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