Bipartite 3-Regular Counting Problems with Mixed Signs

Jin-Yi Cai Austen Z. Fan Yin Liu
University of Wisconsin, Madison

FCT 2021

Counting Problem

Given a Boolean formula

Decision: is there a satisfying assignment ϕ ?

Counting: how many satisfying assignments ϕ are there?

Holant Framework

Trace back to Valiant's holographic transformation [Val06]
Capture many counting problems in a natural way, e.g. counting perfect matchings

Provably more expressive than \#CSP [FLS07]
Long line of research showing dichotomies in Holant framework [KC16, CGW16, Bac18]

Holant problem

Input: any signature grid $\Omega=(G, \mathcal{F}, \pi)$ where $G=(V, E)$ is a graph, \mathcal{F} is a set of functions $[q]^{k} \rightarrow \mathbb{C}$, and π is a mapping from the vertex set V to \mathcal{F}.

Output: the Holant value Holant ${ }_{\Omega}=\sum_{\sigma} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right)$ where σ is a mapping $E \rightarrow[q], f_{v}(\cdot):=\pi(v) \in \mathcal{F}$, and $E(v)$ denotes the set of incident edges of v.

Holant problem; example

Example

Let $q=\{0,1\}$ and $\mathcal{F}=\left\{\right.$ At-Most-One $\left._{k}\right\}$, then Holant ${ }_{\Omega}$ counts the number of matchings.

Example

Let $q=\{0,1, \ldots, k-1\}$ and $\mathcal{F}=\left\{\right.$ All-Distinct $\left._{k}\right\}$, then Holant $_{\Omega}$ counts the number of proper edge colorings using at most k colors.

Dichotomy results in Holant framework

Dichotomy says a problem is either tractable or \#P-complete, despite Ladner's theorem (counting version).

See Guo and Lu's survey On the Complexity of Holant Problems; Cai and Chen's book Complexity Dichotomies for Counting Problems; Shuai's thesis Complexity Classification of Counting Problems on Boolean Variables for more information.

Dichotomy results in Holant framework; example

Theorem (Cai, Guo, Williams; 2012)
A Holant problem over an arbitrary set of complex-valued symmetric constraint functions \mathcal{F} on Boolean variables is \#P-complete unless:

- every function in \mathcal{F} has arity at most two;
- \mathcal{F} is transformable to an affine type;
- \mathcal{F} is transformable to a product type;
- \mathcal{F} is vanishing, combined with the right type of binary functions;
- \mathcal{F} belongs to a special category of vanishing type Fibonacci gates.
in which the Holant value can be computed in polynomial time.

Bipartite Holant problem

Restrict underlying graph to be bipartite.
Input: any signature grid $\Omega=(G, \mathcal{F}, \mathcal{G}, \pi)$ where $G=(V, U, E)$ is a bipartite graph, \mathcal{F} and \mathcal{G} are two sets of functions $[q]^{k} \rightarrow \mathbb{C}$, and π is a mapping from the vertex set $V \cup U$ to $\mathcal{F} \cup \mathcal{G}$ such that $\pi(V) \subseteq \mathcal{F}$ and $\pi(U) \subseteq \mathcal{G}$.

Output: Holant ${ }_{\Omega}=\sum_{\sigma} \prod_{v \in V} f_{v}\left(\left.\sigma\right|_{E(v)}\right) \prod_{u \in U} g_{u}\left(\left.\sigma\right|_{E(u)}\right)$ where σ is a mapping $E \rightarrow[q], f_{v}(\cdot):=\pi(v) \in \mathcal{F}, g_{u}(\cdot):=\pi(u) \in \mathcal{G}$, and $E(v)$ denotes the set of incident edges of v.

\#CSP

Fix a domain $D=\{1,2, \ldots, d\}$ and a set of complex-valued functions $\mathcal{F}=\left\{f_{1}, f_{2}, \ldots, f_{h}\right\}$ where $f_{i}: D^{r_{i}} \rightarrow \mathbb{C}$ for some r_{i}.

Input: a tuple $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ of variables over D and a collection I of tuples $\left(f, i_{1}, \ldots, i_{r}\right)$ in which f is an r-ary function from \mathcal{F} and $i_{1}, \ldots, i_{r} \in[n]$.

Output: the partition function $Z(I):=\sum_{x \in D^{n}} F_{I}(x)$ where $F_{l}(x):=\prod_{\left(f, i_{1}, \ldots, i_{r}\right) \in I} f\left(x_{i_{1}}, \ldots, x_{i_{r}}\right)$

Observe this is the bipartite Holant problem with \mathcal{F} on one side and Equality $:=\left\{={ }_{k}\right.$ for all $\left.k \in \mathbb{N}\right\}$ on the other side!

Our main result

We initiate the study of Holant problems on bipartite graphs.
Specifically, We prove a dichotomy result on a class of 3-regular bipartite graph Holant problem, namely $\operatorname{Holant}\left(f \mid==_{3}\right)$ where f is an arbitrary rational symmetric Boolean constraint function and $=3$ is the Equality ${ }_{3}$ function.

This is the most basic yet non-trivial bipartite setting and our result is a mere starting point for understanding bipartite Holant problems. Almost every generalization is an open problem at this point.

Theorem (Cai, F. \& Liu)

The problem Holant $\left\{\left[f_{0}, f_{1}, f_{2}, f_{3}\right] \mid(=3)\right\}$ with $f_{i} \in \mathbb{Q}$ ($i=0,1,2,3$) is \#P-hard unless the signature $\left[f_{0}, f_{1}, f_{2}, f_{3}\right]$ is degenerate, Gen-Eq or belongs to the affine class.

New phenomenon

We discover a set \mathcal{F} with the property that for every $f \in \mathcal{F}$ the problem Holant $\left(f \mid==_{3}\right)$ is planar P-time computable but \#P-hard in general, yet its planar tractability is by a combination of a holographic transformation by Hadamard matrix $H=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ to FKT together with an independent global argument.

Lemma (Cai, F. \& Liu)
The problem Holant ([3a+b, $-a-b,-a+b, 3 a-b] \mid=3)$ is computable in polynomial time on planar graphs for all a, b, but is \#P-hard on general graphs for all $a \neq 0$.

Why remarkable?

Proof.
The following equivalence is by holographic transformation:

$$
\begin{array}{rll}
\operatorname{Holant}\left(f \mid\left(=_{3}\right)\right) & \equiv_{T} & \operatorname{Holant}\left(f H^{\otimes 3} \mid\left(H^{-1}\right)^{\otimes 3}\left(==_{3}\right)\right) \\
& \equiv_{T} & \operatorname{Holant}([0,0, a, b] \mid[1,0,1,0]) \\
& \equiv_{T} & \operatorname{Holant}([0,0, a, 0] \mid[0,0,1,0]) \\
& \equiv_{T} & \operatorname{Holant}([0, a, 0,0] \mid[0,1,0,0])
\end{array}
$$

where the last line is (up to a global nonzero factor) the perfect matching problem on 3-regular bipartite graphs. This problem is computable in polynomial time on planar graphs and \#P-hard on general graphs.

Why remarkable?

For counting CSP problems over Boolean variables, all problems that are \#P-hard in general but P-time tractable on planar graphs are tractable by the following universal algorithmic strategy: a holographic transformation to matchgates followed by the FKT algorithm [CLX10].

On the other hand, for (non-bipartite) Holant problems with arbitrary symmetric signature sets, this category of problems (planar tractable but \#P-hard in general) is completely characterized by two types [CFGW15] : (1) holographic transformations to matchgates, and (2) a separate kind that depends on the existence of "a wheel structure" (unrelated to holographic transformations and matchgates).

Here we have found the first instance where a new type has emerged!

Main obstacle I

When the graph is bipartite and r-regular, there is a number theoretic limitation as to what types of gadgets one can possibly construct.

Main obstacle II

$\operatorname{mat}=\left\{\left\{1, a^{\wedge} 2, a, a * b\right\},\left\{a, a \star b, a^{\wedge} 2, b^{\wedge} 2\right\},\left\{a^{\wedge} 2, b^{\wedge} 2, a * b, b * c\right\},\left\{a * b, b \star c, b^{\wedge} 2, c^{\wedge} 2\right\}\right\}$
Vet $=\{\{1\},\{a\},\{b\},\{c\}\} \mid$

JordanDecomposition[mat.mat.Vet]

Outt $)=\left\{\left\{\left\{-\left\langle\left\langle-1-3 a^{3}-a^{4} b-a^{2} b^{2}+a b^{4}+a^{2} b^{2} c+3 b^{3} c^{2}+c^{5}+\right.\right.\right.\right.\right.$
$\sqrt{ }\left(1+10 a^{3}+21 a^{5}+8 a^{9}+18 a^{4} b+30 a^{7} b+6 a^{2} b^{2}+46 a^{5} b^{2}+17 a^{8} b^{2}+28 a^{3} b^{3}+70 a^{6} b^{3}-2 a b^{4}+51 a^{4} b^{4}+8 a^{2} b^{5}+\right.$
$66 a^{5} b^{5}+22 a^{3} b^{6}+4 a b^{7}+17 a^{2} b^{8}+8 a^{4} b c+12 a^{7} b c+2 a^{2} b^{2} c+18 a^{5} b^{2} c+20 a^{3} b^{3} c+22 a^{5} b^{3} c+8 a b^{4} c+$
$66 a^{4} b^{4} c+28 a^{2} b^{5} c+70 a^{3} b^{6} c+12 a b^{7} c+8 b^{9} c+4 a^{4} b c^{2}+4 a^{7} b c^{2}+8 a^{2} b^{2} c^{2}+28 a^{5} b^{2} c^{2}-6 b^{3} c^{2}+6 a^{3} b^{3} c^{2}+$ $51 a^{4} b^{4} c^{2}+18 a^{2} b^{5} c^{2}+30 a b^{7} c^{2}+4 a^{2} b^{2} c^{3}+8 a^{5} b^{2} c^{3}+20 a^{3} b^{3} c^{3}+4 a b^{4} c^{3}+46 a^{2} b^{5} c^{3}+4 a b c^{4}+8 a^{4} b c^{4}+$ $\left.\left.8 a^{2} b^{2} c^{4}+28 a^{3} b^{3} c^{4}+8 a b^{4} c^{4}+21 b^{5} c^{4}-2 c^{5}-6 a^{3} c^{5}-2 a^{4} b c^{5}+2 a^{2} b^{2} c^{5}+18 a b^{4} c^{5}+6 a^{2} b^{2} c^{5}+10 b^{3} c^{7}+c^{10}\right)\right) /$ $\left.\left(2\left(a+2 a^{4}+2 a^{2} b+4 a^{3} b^{2}+a b^{3}+b^{5}+a^{2} b c+2 a b^{3} c+a^{2} b c^{2}+b^{2} c^{3}\right)\right)\right)$,
$-\left(\left(-1-3 a^{3}-a^{4} b-a^{2} b^{2}+a b^{4}+a^{2} b^{2} c+3 b^{3} c^{2}+c^{5}-\sqrt{ }\left(1+10 a^{3}+21 a^{6}+8 a^{9}+18 a^{4} b+30 a^{7} b+6 a^{2} b^{2}+46 a^{5} b^{2}+17 a^{8} b^{2}+\right.\right.\right.$ $28 a^{3} b^{3}+70 a^{5} b^{3}-2 a b^{4}+51 a^{4} b^{4}+8 a^{2} b^{5}+66 a^{5} b^{5}+22 a^{3} b^{6}+4 a b^{7}+17 a^{2} b^{8}+8 a^{4} b c+12 a^{7} b c+2 a^{2} b^{2} c+18 a^{5} b^{2} c+$ $20 a^{3} b^{3} c+22 a^{6} b^{3} c+8 a b^{4} c+66 a^{4} b^{4} c+28 a^{2} b^{5} c+70 a^{3} b^{6} c+12 a b^{7} c+8 b^{9} c+4 a^{4} b c^{2}+4 a^{7} b c^{2}+8 a^{2} b^{2} c^{2}+28 a^{5} b^{2} c^{2}-$ $6 b^{3} c^{2}+6 a^{3} b^{3} c^{2}+51 a^{4} b^{4} c^{2}+18 a^{2} b^{5} c^{2}+30 a b^{7} c^{2}+4 a^{2} b^{2} c^{3}+8 a^{5} b^{2} c^{3}+20 a^{3} b^{3} c^{3}+4 a b^{4} c^{3}+46 a^{2} b^{5} c^{3}+4 a b c^{4}+$ $\left.\left.8 a^{4} b c^{4}+8 a^{2} b^{2} c^{4}+28 a^{3} b^{3} c^{4}+8 a b^{4} c^{4}+21 b^{5} c^{4}-2 c^{5}-6 a^{3} c^{5}-2 a^{4} b c^{5}+2 a^{2} b^{2} c^{5}+18 a b^{4} c^{5}+6 a^{2} b^{2} c^{6}+10 b^{3} c^{7}+c^{16}\right)\right) /$
$\left.\left.\left.\left\{2\left(a+2 a^{4}+2 a^{2} b+4 a^{3} b^{2}+a b^{3}+b^{5}+a^{2} b c+2 a b^{3} c+a^{2} b c^{2}+b^{2} c^{3}\right)\right)\right)\right\},\{1,1)\right\}$, $\left\{\left\{\frac{1}{2}\left(1+3 a^{3}+3 a^{4} b+3 a b^{4}+3 b^{3} c^{2}+c^{5}+5 a^{2} b^{2}(1+c)+2 a b\left(1+c+c^{2}+c^{3}\right)-\right.\right.\right.$
$\sqrt{ }\left(8 a^{9}+17 a^{8} b^{2}+8 b^{9} c+21 b^{6} c^{4}+2 a^{7} b\left(15+6 c+2 c^{2}\right)+2 a^{5} b^{2}\left(23+33 b^{3}+9 c+14 c^{2}+4 c^{3}\right)+\left(-1+c^{5}\right)^{2}+\right.$ $2 b^{3} c^{2}\left(-3+5 c^{5}\right)+a^{6}\left(21+b^{3}(70+22 c)\right)+a^{4} b\left(18+8 c+4 c^{2}+8 c^{4}-2 c^{5}+b^{3}\left(51+66 c+51 c^{2}\right)\right)+$ $2 a^{3}\left(5-3 c^{5}+b^{6}(11+35 c)+b^{3}\left(14+10 c+3 c^{2}+10 c^{3}+14 c^{4}\right)\right)+2 a\left(2 b c^{4}+b^{7}\left(2+6 c+15 c^{2}\right)+b^{4}\left(-1+4 c+2 c^{3}+4 c^{4}+9 c^{5}\right)\right)+$ $\left.\left.\left.a^{2}\left(17 b^{8}+2 b^{5}\left(4+14 c+9 c^{2}+23 c^{3}\right)+2 b^{2}\left(3+c+4 c^{2}+2 c^{3}+4 c^{4}+c^{5}+3 c^{5}\right)\right)\right)\right), 0\right\}$,
$\left\{0, \frac{1}{2}\left(1+3 a^{3}+3 a^{4} b+3 a b^{4}+3 b^{3} c^{2}+c^{5}+5 a^{2} b^{2}(1+c)+2 a b\left(1+c+c^{2}+c^{3}\right)+\right.\right.$
$\sqrt{ }\left(8 a^{9}+17 a^{8} b^{2}+8 b^{9} c+21 b^{6} c^{4}+2 a^{7} b\left(15+6 c+2 c^{2}\right)+2 a^{5} b^{2}\left(23+33 b^{3}+9 c+14 c^{2}+4 c^{3}\right)+\left(-1+c^{5}\right)^{2}+\right.$ $2 b^{3} c^{2}\left(-3+5 c^{5}\right)+a^{6}\left(21+b^{3}(70+22 c)\right)+a^{4} b\left(18+8 c+4 c^{2}+8 c^{4}-2 c^{5}+b^{3}\left(51+66 c+51 c^{2}\right)\right)+$
$2 a^{3}\left(5-3 c^{5}+b^{6}(11+35 c)+b^{3}\left(14+10 c+3 c^{2}+10 c^{3}+14 c^{4}\right)\right)+2 a\left(2 b c^{4}+b^{7}\left(2+6 c+15 c^{2}\right)+b^{4}\left(-1+4 c+2 c^{3}+4 c^{4}+9 c^{5}\right)\right)+$
$\left.\left.\left.\left.a^{2}\left(17 b^{8}+2 b^{5}\left(4+14 c+9 c^{2}+23 c^{3}\right)+2 b^{2}\left(3+c+4 c^{2}+2 c^{3}+4 c^{4}+c^{5}+3 c^{5}\right)\right) 1\right)\right\}\right\}\right\}$
Figure: Mathematica ${ }^{\text {TM }}$ computation when iterating previous gadget

Main obstacle III

We overcome this obstacle by utilizing a novel technique of Interpolating degenerate straddled bipartite function and splitting them into unary functions.

Proof flowchart

Future work

We believe our dichotomy is valid even for (algebraic) real or complex-valued constraint functions. However, in this paper we can only prove it for rational-valued constraint functions.

Other immediate questions:

- Drop the $=3$ assumption?
- Include more than one constraint function on either side?
- Other regularity parameter r ?

Thank You!

References I

Miriam Backens, A complete dichotomy for complex-valued Holant ${ }^{c}$, 45th International Colloquium on Automata, Languages, and Programming, ICALP, 2018.

嗇 Jin-Yi Cai, Zhiguo Fu, Heng Guo, and Tyson Williams, A Holant dichotomy: Is the FKT algorithm universal?, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS, 2015, pp. 1259-1276.

R Jin-Yi Cai, Heng Guo, and Tyson Williams, A complete dichotomy rises from the capture of vanishing signatures, SIAM J. Comput. 45 (2016), no. 5, 1671-1728.

Jin-Yi Cai, Pinyan Lu, and Mingji Xia, Holographic algorithms with matchgates capture precisely tractable planar \#CSP, 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2010, pp. 427-436.

References II

围 Michael Freedman, László Lovász, and Alexander Schrijver, Reflection positivity, rank connectivity, and homomorphism of graphs, Journal of the American Mathematical Society 20 (2007), no. 1, 37-51.

击 Michael Kowalczyk and Jin-Yi Cai, Holant problems for 3-regular graphs with complex edge functions, Theory Comput. Syst. 59 (2016), no. 1, 133-158.
E- Leslie G. Valiant, Accidental algorithms, 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), IEEE Computer Society, 2006, pp. 509-517.

