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Counting Problem

Given a Boolean formula

Decision: is there a satisfying assignment φ?

Counting: how many satisfying assignments φ are there?



Holant Framework

Trace back to Valiant’s holographic transformation [Val06]

Capture many counting problems in a natural way, e.g. counting
perfect matchings

Provably more expressive than #CSP [FLS07]

Long line of research showing dichotomies in Holant framework
[KC16, CGW16, Bac18]



Holant problem

Input: any signature grid Ω = (G ,F , π) where G = (V ,E ) is a
graph, F is a set of functions [q]k → C, and π is a mapping from
the vertex set V to F .

Output: the Holant value HolantΩ =
∑
σ

∏
v∈V

fv (σ|E(v)) where σ is

a mapping E → [q], fv (·) := π(v) ∈ F , and E (v) denotes the set
of incident edges of v .



Holant problem; example

Example

Let q = {0, 1} and F = {At-Most-Onek}, then HolantΩ counts
the number of matchings.

Example

Let q = {0, 1, . . . , k − 1} and F = {All-Distinctk}, then
HolantΩ counts the number of proper edge colorings using at most
k colors.



Dichotomy results in Holant framework

Dichotomy says a problem is either tractable or #P-complete,
despite Ladner’s theorem (counting version).

See Guo and Lu’s survey On the Complexity of Holant Problems;
Cai and Chen’s book Complexity Dichotomies for Counting
Problems; Shuai’s thesis Complexity Classification of Counting
Problems on Boolean Variables for more information.



Dichotomy results in Holant framework; example

Theorem (Cai, Guo, Williams; 2012)

A Holant problem over an arbitrary set of complex-valued
symmetric constraint functions F on Boolean variables is
#P-complete unless:

I every function in F has arity at most two;

I F is transformable to an affine type;

I F is transformable to a product type;

I F is vanishing, combined with the right type of binary
functions;

I F belongs to a special category of vanishing type Fibonacci
gates.

in which the Holant value can be computed in polynomial time.



Bipartite Holant problem

Restrict underlying graph to be bipartite.

Input: any signature grid Ω = (G ,F ,G, π) where G = (V ,U,E ) is
a bipartite graph, F and G are two sets of functions [q]k → C, and
π is a mapping from the vertex set V ∪ U to F ∪ G such that
π(V ) ⊆ F and π(U) ⊆ G.

Output: HolantΩ =
∑
σ

∏
v∈V

fv (σ|E(v))
∏
u∈U

gu(σ|E(u)) where σ is a

mapping E → [q], fv (·) := π(v) ∈ F , gu(·) := π(u) ∈ G, and E (v)
denotes the set of incident edges of v .



#CSP

Fix a domain D = {1, 2, . . . , d} and a set of complex-valued
functions F = {f1, f2, . . . , fh} where fi : Dri → C for some ri .

Input: a tuple x = (x1, . . . , xn) of variables over D and a collection
I of tuples (f , i1, . . . , ir ) in which f is an r -ary function from F and
i1, . . . , ir ∈ [n].

Output: the partition function Z (I ) :=
∑

x∈Dn FI (x) where
FI (x) :=

∏
(f ,i1,...,ir )∈I f (xi1 , . . . , xir )

Observe this is the bipartite Holant problem with F on one side
and Equality:= {=k for all k ∈ N} on the other side!



Our main result

We initiate the study of Holant problems on bipartite graphs.

Specifically, We prove a dichotomy result on a class of 3-regular
bipartite graph Holant problem, namely Holant(f | =3) where f is
an arbitrary rational symmetric Boolean constraint function and
=3 is the Equality3 function.

This is the most basic yet non-trivial bipartite setting and our
result is a mere starting point for understanding bipartite Holant
problems. Almost every generalization is an open problem at this
point.

Theorem (Cai, F. & Liu)

The problem Holant{ [f0, f1, f2, f3] | (=3)} with fi ∈ Q
(i = 0, 1, 2, 3) is #P-hard unless the signature [f0, f1, f2, f3] is
degenerate, Gen-Eq or belongs to the affine class.



New phenomenon

We discover a set F with the property that for every f ∈ F the
problem Holant (f |=3) is planar P-time computable but #P-hard
in general, yet its planar tractability is by a combination of a
holographic transformation by Hadamard matrix H =

[
1 1
1 −1

]
to

FKT together with an independent global argument.

Lemma (Cai, F. & Liu)

The problem Holant ([3a + b,−a− b,−a + b, 3a− b] |=3) is
computable in polynomial time on planar graphs for all a, b, but is
#P-hard on general graphs for all a 6= 0.



Why remarkable?

Proof.
The following equivalence is by holographic transformation:

Holant (f | (=3)) ≡T Holant
(
fH⊗3 | (H−1)⊗3(=3)

)
≡T Holant ([0, 0, a, b] | [1, 0, 1, 0])

≡T Holant ([0, 0, a, 0] | [0, 0, 1, 0])

≡T Holant ([0, a, 0, 0] | [0, 1, 0, 0])

where the last line is (up to a global nonzero factor) the perfect
matching problem on 3-regular bipartite graphs. This problem is
computable in polynomial time on planar graphs and #P-hard on
general graphs.



Why remarkable?

For counting CSP problems over Boolean variables, all problems
that are #P-hard in general but P-time tractable on planar graphs
are tractable by the following universal algorithmic strategy: a
holographic transformation to matchgates followed by the FKT
algorithm [CLX10].

On the other hand, for (non-bipartite) Holant problems with
arbitrary symmetric signature sets, this category of problems
(planar tractable but #P-hard in general) is completely
characterized by two types [CFGW15] : (1) holographic
transformations to matchgates, and (2) a separate kind that
depends on the existence of “a wheel structure” (unrelated to
holographic transformations and matchgates).

Here we have found the first instance where a new type has
emerged!



Main obstacle I

When the graph is bipartite and r -regular, there is a number
theoretic limitation as to what types of gadgets one can possibly
construct.



Main obstacle II

Figure: Mathematica™ computation when iterating previous gadget



Main obstacle III

We overcome this obstacle by utilizing a novel technique of
Interpolating degenerate straddled bipartite function and splitting
them into unary functions.



Proof flowchart

[f0, f1, f2, f3]

Dichotomy
for

[0, a, b, 0]

[1, a, b, c]

Dichotomy
for

[1, a, b, 0]

With possi-
ble flipping
we have di-
chotomy for

[1, a, 0, c]

Dichotomy
when abc 6= 0

if f0 = f3 = 0

else, possibly
by flipping

if c = 0
if c 6= 0

and ab = 0

else (i.e., abc 6= 0)



Future work

We believe our dichotomy is valid even for (algebraic) real or
complex-valued constraint functions. However, in this paper we
can only prove it for rational-valued constraint functions.

Other immediate questions:

I Drop the =3 assumption?

I Include more than one constraint function on either side?

I Other regularity parameter r?

I ...



Thank You!
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