
The Fine-Grained Complexity of Boolean
Conjunctive Queries and Sum-Product Problems

Austen Z. Fan Paraschos Koutris Hangdong Zhao

University of Wisconsin-Madison

ICALP 2023

Introduction

Venue

Conf. Type
ICALP Theory
SODA Theory
PODS Theory
SIGMODDatabase
... ...

Field

Name Type
Paris Theory
Handong Theory
Austen Theory
AnHai Database
... ...

Talk

Name Conf.
Manuel ICALP
Moritz ICALP
Austen ICALP
Hangdong PODS
... ...

q() : −Venue(Conf .,Type),Field(Name,Type),Talk(Name,Conf .)

Introduction

BCQ is tightly connected to CSP, FO Logic and many fields in
computer science.

In this paper, we study the fine-grained complexity of BCQ.

We introduce the Clique Embedding Power, which provides the
conditional lower bound O(∥I∥emb(H)).

Introduction

BCQ is tightly connected to CSP, FO Logic and many fields in
computer science.

In this paper, we study the fine-grained complexity of BCQ.

We introduce the Clique Embedding Power, which provides the
conditional lower bound O(∥I∥emb(H)).

Introduction

BCQ is tightly connected to CSP, FO Logic and many fields in
computer science.

In this paper, we study the fine-grained complexity of BCQ.

We introduce the Clique Embedding Power, which provides the
conditional lower bound O(∥I∥emb(H)).

Prior Work

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear
time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12,
AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time
Õ(∥I∥subw(H)).

Our clique embedding power is provably always smaller or
equal to the submodular width.

Prior Work

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear
time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12,
AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time
Õ(∥I∥subw(H)).

Our clique embedding power is provably always smaller or
equal to the submodular width.

Prior Work

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear
time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12,
AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time
Õ(∥I∥subw(H)).

Our clique embedding power is provably always smaller or
equal to the submodular width.

Prior Work

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear
time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12,
AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time
Õ(∥I∥subw(H)).

Our clique embedding power is provably always smaller or
equal to the submodular width.

Prior Work

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear
time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12,
AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time
Õ(∥I∥subw(H)).

Our clique embedding power is provably always smaller or
equal to the submodular width.

Prior Work

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear
time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12,
AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time
Õ(∥I∥subw(H)).

Our clique embedding power is provably always smaller or
equal to the submodular width.

Prior Work

Lower Bound

[Mar13] showed that, assuming ETH, CSP(H) is fixed-parameter
tractable if and only if H has bounded submodular width.

Our method gives a fine-grained lower bound for every query.

Prior Work

Lower Bound

[Mar13] showed that, assuming ETH, CSP(H) is fixed-parameter
tractable if and only if H has bounded submodular width.

Our method gives a fine-grained lower bound for every query.

Prior Work

Lower Bound

[Mar13] showed that, assuming ETH, CSP(H) is fixed-parameter
tractable if and only if H has bounded submodular width.

Our method gives a fine-grained lower bound for every query.

Prior Work

Lower Bound

[Mar13] showed that, assuming ETH, CSP(H) is fixed-parameter
tractable if and only if H has bounded submodular width.

Our method gives a fine-grained lower bound for every query.

Our Contributions

▶ Introduce the notion of the clique embedding power emb(H)
and explore its properties; most importantly, we prove that
emb(H) ≤ subw(H).

▶ Show that computing emb(H) is decidable and give a Mixed
Integer Linear Program formulation.

▶ Construct a semiring-oblivious reduction from the k-clique
problem to any query and derive conditional lower bounds for
its running time.

▶ Identify several classes of hypergraphs for which emb(H) =
subw(H), and a hypergraph with six vertices for which there is
a gap between these two quantities.

Our Contributions

▶ Introduce the notion of the clique embedding power emb(H)
and explore its properties; most importantly, we prove that
emb(H) ≤ subw(H).

▶ Show that computing emb(H) is decidable and give a Mixed
Integer Linear Program formulation.

▶ Construct a semiring-oblivious reduction from the k-clique
problem to any query and derive conditional lower bounds for
its running time.

▶ Identify several classes of hypergraphs for which emb(H) =
subw(H), and a hypergraph with six vertices for which there is
a gap between these two quantities.

Our Contributions

▶ Introduce the notion of the clique embedding power emb(H)
and explore its properties; most importantly, we prove that
emb(H) ≤ subw(H).

▶ Show that computing emb(H) is decidable and give a Mixed
Integer Linear Program formulation.

▶ Construct a semiring-oblivious reduction from the k-clique
problem to any query and derive conditional lower bounds for
its running time.

▶ Identify several classes of hypergraphs for which emb(H) =
subw(H), and a hypergraph with six vertices for which there is
a gap between these two quantities.

Our Contributions

▶ Introduce the notion of the clique embedding power emb(H)
and explore its properties; most importantly, we prove that
emb(H) ≤ subw(H).

▶ Show that computing emb(H) is decidable and give a Mixed
Integer Linear Program formulation.

▶ Construct a semiring-oblivious reduction from the k-clique
problem to any query and derive conditional lower bounds for
its running time.

▶ Identify several classes of hypergraphs for which emb(H) =
subw(H), and a hypergraph with six vertices for which there is
a gap between these two quantities.

Our Contributions

▶ Introduce the notion of the clique embedding power emb(H)
and explore its properties; most importantly, we prove that
emb(H) ≤ subw(H).

▶ Show that computing emb(H) is decidable and give a Mixed
Integer Linear Program formulation.

▶ Construct a semiring-oblivious reduction from the k-clique
problem to any query and derive conditional lower bounds for
its running time.

▶ Identify several classes of hypergraphs for which emb(H) =
subw(H), and a hypergraph with six vertices for which there is
a gap between these two quantities.

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)

Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)

Sum-of-Product Over Semirings

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V ,|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V ,|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V ,|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Our hardness reduction from k-clique is semiring-oblivious.

Sum-of-Product Over Semirings

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V ,|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V ,|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V ,|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Our hardness reduction from k-clique is semiring-oblivious.

Sum-of-Product Over Semirings

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V ,|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V ,|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V ,|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Our hardness reduction from k-clique is semiring-oblivious.

Sum-of-Product Over Semirings

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V ,|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V ,|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V ,|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Our hardness reduction from k-clique is semiring-oblivious.

Sum-of-Product Over Semirings

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V ,|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V ,|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V ,|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Our hardness reduction from k-clique is semiring-oblivious.

Sum-of-Product Over Semirings

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V ,|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V ,|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V ,|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Our hardness reduction from k-clique is semiring-oblivious.

Outline

Clique Embedding Power

Decidability and Mixed Integer Programming Formulation

Conditional Lower Bound

Tightness & Gap

Future Work

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5

1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3
emb = 3

2

1 2

3 3

emb = 3
2

1,2

2,3

3,4

5,1 4,5

emb = 5
3

1-3

2,3

1,4

7

5,6

4-6

emb = 7
4

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3
emb = 3

2

1 2

3 3

emb = 3
2

1,2

2,3

3,4

5,1 4,5

emb = 5
3

1-3

2,3

1,4

7

5,6

4-6

emb = 7
4

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3
emb = 3

2

1 2

3 3

emb = 3
2

1,2

2,3

3,4

5,1 4,5

emb = 5
3

1-3

2,3

1,4

7

5,6

4-6

emb = 7
4

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3
emb = 3

2

1 2

3 3

emb = 3
2

1,2

2,3

3,4

5,1 4,5

emb = 5
3

1-3

2,3

1,4

7

5,6

4-6

emb = 7
4

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3
emb = 3

2

1 2

3 3

emb = 3
2

1,2

2,3

3,4

5,1 4,5

emb = 5
3

1-3

2,3

1,4

7

5,6

4-6

emb = 7
4

Decidability and MIP formulation, I

1 5 30 60
k

1

5/3

em
b_

k

Figure: embk(H) for the 6-cycle

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch

∑
S⊆V :e∩S ̸=∅

xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = 1

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ R≥0 ∀S ⊆ V

Theorem
Let w∗ be the optimal solution of MIP. Then, emb(H) = 1/w∗.
Additionally, there exists an integer K ≥ 3 such that
emb(H) = embK (H).

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = 1

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ R≥0 ∀S ⊆ V

Theorem
Let w∗ be the optimal solution of MIP. Then, emb(H) = 1/w∗.
Additionally, there exists an integer K ≥ 3 such that
emb(H) = embK (H).

Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = 1

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ R≥0 ∀S ⊆ V

Theorem
Let w∗ be the optimal solution of MIP. Then, emb(H) = 1/w∗.
Additionally, there exists an integer K ≥ 3 such that
emb(H) = embK (H).

Conditional Lower Bound, I

Conjectures related to k-Clique

Conjecture (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Conjecture (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

Conditional Lower Bound, I

Conjectures related to k-Clique

Conjecture (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Conjecture (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

Conditional Lower Bound, I

Conjectures related to k-Clique

Conjecture (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Conjecture (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

x4 x5
⟨v24 , v45 ⟩ ⟨v45 , v61 ⟩

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

x4 x5
⟨v24 , v45 ⟩ ⟨v45 , v61 ⟩

x5 x1
⟨v45 , v61 ⟩ ⟨v61 , v52 ⟩

Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

x4 x5
⟨v24 , v45 ⟩ ⟨v45 , v61 ⟩

x5 x1
⟨v45 , v61 ⟩ ⟨v61 , v52 ⟩

Conditional Lower Bound, III

The proof can be adapted to tropical semiring (min k-clique)
by assigning each pair {u, v} ⊆ [k] to a unique hyperedge
according to ψ.

Theorem
For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

Conditional Lower Bound, III

The proof can be adapted to tropical semiring (min k-clique)
by assigning each pair {u, v} ⊆ [k] to a unique hyperedge
according to ψ.

Theorem
For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

Conditional Lower Bound, III

The proof can be adapted to tropical semiring (min k-clique)
by assigning each pair {u, v} ⊆ [k] to a unique hyperedge
according to ψ.

Theorem
For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

Tightness & Gap

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 7/4 2

Table: Clique embedding power and submodular width for query classes

Future Work

▶ Understand the gap in the boat query...

▶ Fast matrix multiplication ([NP85] solves k-clique in

O(n
k
3
·ω))...

▶ ...

Future Work

▶ Understand the gap in the boat query...

▶ Fast matrix multiplication ([NP85] solves k-clique in

O(n
k
3
·ω))...

▶ ...

Future Work

▶ Understand the gap in the boat query...

▶ Fast matrix multiplication ([NP85] solves k-clique in

O(n
k
3
·ω))...

▶ ...

Future Work

▶ Understand the gap in the boat query...

▶ Fast matrix multiplication ([NP85] solves k-clique in

O(n
k
3
·ω))...

▶ ...

Thank You!

References I

Albert Atserias, Martin Grohe, and Dániel Marx.
Size bounds and query plans for relational joins.
SIAM J. Comput., 42(4):1737–1767, 2013.

Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings.
In PODS, pages 31–40. ACM, 2007.

Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul
Valiant.
Size and treewidth bounds for conjunctive queries.
J. ACM, 59(3):16:1–16:35, 2012.

Martin Grohe and Dániel Marx.
Constraint solving via fractional edge covers.
In SODA, pages 289–298. ACM Press, 2006.

References II

Martin Grohe and Dániel Marx.
Constraint solving via fractional edge covers.
ACM Trans. Algorithms, 11(1):4:1–4:20, 2014.

Martin Grohe.
The complexity of homomorphism and constraint satisfaction
problems seen from the other side.
J. ACM, 54(1):1:1–1:24, 2007.

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu.
Computing join queries with functional dependencies.
In PODS, pages 327–342. ACM, 2016.

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu.
What do shannon-type inequalities, submodular width, and
disjunctive datalog have to do with one another?
In PODS, pages 429–444. ACM, 2017.

References III

Dániel Marx.
Can you beat treewidth?
Theory Comput., 6(1):85–112, 2010.

Dániel Marx.
Tractable hypergraph properties for constraint satisfaction and
conjunctive queries.
J. ACM, 60(6):42:1–42:51, 2013.

Frantisek Matús.
Infinitely many information inequalities.
In ISIT, pages 41–44. IEEE, 2007.

Jaroslav Nešeťril and Svatopluk Poljak.
On the complexity of the subgraph problem.
Commentationes Mathematicae Universitatis Carolinae,
26(2):415–419, 1985.

References IV

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra.
Worst-case optimal join algorithms: [extended abstract].
In PODS, pages 37–48. ACM, 2012.

Hung Q. Ngo, Christopher Ré, and Atri Rudra.
Skew strikes back: new developments in the theory of join
algorithms.
SIGMOD Rec., 42(4):5–16, 2013.

Todd L. Veldhuizen.
Triejoin: A simple, worst-case optimal join algorithm.
In ICDT, pages 96–106. OpenProceedings.org, 2014.

Mihalis Yannakakis.
Algorithms for acyclic database schemes.
In VLDB, pages 82–94. IEEE Computer Society, 1981.

	Clique Embedding Power
	Decidability and Mixed Integer Programming Formulation
	Conditional Lower Bound
	Tightness & Gap
	Future Work

