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Introduction

BCQ is tightly connected to CSP, FO Logic and many fields in
computer science.

In this paper, we study the fine-grained complexity of BCQ.

We introduce the Clique Embedding Power, which provides the
conditional lower bound O(∥I∥emb(H)).
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Upper Bound

[Yan81] observed that acyclic queries can be answered in linear
time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12,
AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time
Õ(∥I∥subw(H)).

Our clique embedding power is provably always smaller or
equal to the submodular width.
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tractable if and only if H has bounded submodular width.

Our method gives a fine-grained lower bound for every query.
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Our Contributions

▶ Introduce the notion of the clique embedding power emb(H)
and explore its properties; most importantly, we prove that
emb(H) ≤ subw(H).

▶ Show that computing emb(H) is decidable and give a Mixed
Integer Linear Program formulation.

▶ Construct a semiring-oblivious reduction from the k-clique
problem to any query and derive conditional lower bounds for
its running time.

▶ Identify several classes of hypergraphs for which emb(H) =
subw(H), and a hypergraph with six vertices for which there is
a gap between these two quantities.
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Sum-of-Product Over Semirings

[GKT07] observed that different database semantics can be unified
at the level of Sum-of-Product computation over various semirings.

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I ) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i ))

q(I ) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i ))

Example

Set semantics ↔ ({True, False},∨,∧)
Bag semantics ↔ (N,+, ∗)
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Sum-of-Product Over Semirings

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V ,|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V ,|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V ,|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Our hardness reduction from k-clique is semiring-oblivious.
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Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from [k] to
P(V) \ ∅ such that (1) ∀v ∈ [k], ψ(v) induces a connected
subhypergraph, and (2) ∀v , u ∈ [k], ψ(v), ψ(u) touch in H.

Example
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Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example
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Decidability and MIP formulation, I

1 5 30 60
k

1

5/3

em
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Figure: embk(H) for the 6-cycle



Decidability and MIP formulation, III

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V
where S is not connected

min{xS , xT} = 0 ∀S ,T ⊆ V
where S ,T do not touch∑

S⊆V :e∩S ̸=∅
xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V
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Let w∗ be the optimal solution of MIP. Then, emb(H) = 1/w∗.
Additionally, there exists an integer K ≥ 3 such that
emb(H) = embK (H).
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Conditional Lower Bound, I

Conjectures related to k-Clique

Conjecture (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Conjecture (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.
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Conditional Lower Bound, II

Theorem
For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.
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Conditional Lower Bound, III

The proof can be adapted to tropical semiring (min k-clique)
by assigning each pair {u, v} ⊆ [k] to a unique hyperedge
according to ψ.

Theorem
For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.
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Tightness & Gap

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 7/4 2

Table: Clique embedding power and submodular width for query classes



Future Work

▶ Understand the gap in the boat query...

▶ Fast matrix multiplication ([NP85] solves k-clique in
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Thank You!



References I

Albert Atserias, Martin Grohe, and Dániel Marx.
Size bounds and query plans for relational joins.
SIAM J. Comput., 42(4):1737–1767, 2013.

Todd J. Green, Gregory Karvounarakis, and Val Tannen.
Provenance semirings.
In PODS, pages 31–40. ACM, 2007.

Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul
Valiant.
Size and treewidth bounds for conjunctive queries.
J. ACM, 59(3):16:1–16:35, 2012.

Martin Grohe and Dániel Marx.
Constraint solving via fractional edge covers.
In SODA, pages 289–298. ACM Press, 2006.



References II

Martin Grohe and Dániel Marx.
Constraint solving via fractional edge covers.
ACM Trans. Algorithms, 11(1):4:1–4:20, 2014.

Martin Grohe.
The complexity of homomorphism and constraint satisfaction
problems seen from the other side.
J. ACM, 54(1):1:1–1:24, 2007.

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu.
Computing join queries with functional dependencies.
In PODS, pages 327–342. ACM, 2016.

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu.
What do shannon-type inequalities, submodular width, and
disjunctive datalog have to do with one another?
In PODS, pages 429–444. ACM, 2017.



References III

Dániel Marx.
Can you beat treewidth?
Theory Comput., 6(1):85–112, 2010.

Dániel Marx.
Tractable hypergraph properties for constraint satisfaction and
conjunctive queries.
J. ACM, 60(6):42:1–42:51, 2013.

Frantisek Matús.
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