The Fine-Grained Complexity of Boolean Conjunctive Queries and Sum-Product Problems

Austen Z. Fan Paraschos Koutris Hangdong Zhao

University of Wisconsin-Madison

ICALP 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Venue		Field		Talk	
Conf.	Туре	Name	Туре	Name	Conf.
ICALP	Theory	Paris	Theory	Manuel	ICALP
SODA	Theory	Handong	Theory	Moritz	ICALP
PODS	Theory	Austen	Theory	Austen	ICALP
SIGMOD	Database	AnHai	Database	Hangdong	PODS

q(): -Venue(Conf., Type), Field(Name, Type), Talk(Name, Conf.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

BCQ is tightly connected to CSP, FO Logic and many fields in computer science.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

BCQ is tightly connected to CSP, FO Logic and many fields in computer science.

In this paper, we study the fine-grained complexity of BCQ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BCQ is tightly connected to CSP, FO Logic and many fields in computer science.

In this paper, we study the fine-grained complexity of BCQ.

We introduce the *Clique Embedding Power*, which provides the conditional lower bound $O(||I||^{emb(H)})$.

Upper Bound

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12, AGM13, NRR13, Vel14, GM14, KNS16]...

Upper Bound

 $\left[\mathsf{Yan81} \right]$ observed that acyclic queries can be answered in linear time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12, AGM13, NRR13, Vel14, GM14, KNS16]...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

[KNS17] showed that a query can be answered in time $\tilde{O}(||I||^{\text{subw}(H)})$.

Upper Bound

[Yan81] observed that acyclic queries can be answered in linear time.

After a long line of research [GM06, Mat07, GLVV12, NPRR12, AGM13, NRR13, Vel14, GM14, KNS16]...

[KNS17] showed that a query can be answered in time $\tilde{O}(||I||^{\text{subw}(H)})$.

Our clique embedding power is provably always smaller or equal to the submodular width.

- ロ ト - 4 回 ト - 4 □

Lower Bound

Lower Bound

[Mar13] showed that, assuming ETH, CSP(\mathcal{H}) is fixed-parameter tractable if and only if \mathcal{H} has bounded submodular width.

Lower Bound

[Mar13] showed that, assuming ETH, CSP(\mathcal{H}) is fixed-parameter tractable if and only if \mathcal{H} has bounded submodular width.

Our method gives a fine-grained lower bound for every query.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

<ロト < @ ト < 差 ト < 差 ト 差 の < @ </p>

Introduce the notion of the *clique embedding power* emb(H) and explore its properties; most importantly, we prove that emb(H) ≤ subw(H).

- Introduce the notion of the *clique embedding power* emb(H) and explore its properties; most importantly, we prove that emb(H) ≤ subw(H).
- Show that computing emb(H) is decidable and give a Mixed Integer Linear Program formulation.

- Introduce the notion of the *clique embedding power* emb(H) and explore its properties; most importantly, we prove that emb(H) ≤ subw(H).
- Show that computing emb(H) is decidable and give a Mixed Integer Linear Program formulation.
- Construct a semiring-oblivious reduction from the k-clique problem to any query and derive conditional lower bounds for its running time.

- Introduce the notion of the *clique embedding power* emb(H) and explore its properties; most importantly, we prove that emb(H) ≤ subw(H).
- Show that computing emb(H) is decidable and give a Mixed Integer Linear Program formulation.
- Construct a semiring-oblivious reduction from the k-clique problem to any query and derive conditional lower bounds for its running time.
- Identify several classes of hypergraphs for which emb(H) = subw(H), and a hypergraph with six vertices for which there is a gap between these two quantities.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

[GKT07] observed that different database semantics can be unified at the level of Sum-of-Product computation over various semirings.

[GKT07] observed that different database semantics can be unified at the level of Sum-of-Product computation over various semirings.

$$q():-R_1(\vec{x}_1), R_2(\vec{x}_2), \ldots, R_n(\vec{x}_n)$$

[GKT07] observed that different database semantics can be unified at the level of Sum-of-Product computation over various semirings.

$$q(i) := -R_1(\vec{x}_1), R_2(\vec{x}_2), \dots, R_n(\vec{x}_n)$$
$$q(I) := \bigvee_{v:\text{valuation}} \bigwedge_{i=1}^n R_i(v(\vec{x}_i))$$

[GKT07] observed that different database semantics can be unified at the level of Sum-of-Product computation over various semirings.

$$q():-R_1(\vec{x}_1), R_2(\vec{x}_2), \dots, R_n(\vec{x}_n)$$
$$q(I):=\bigvee_{v:\text{valuation}} \bigwedge_{i=1}^n R_i(v(\vec{x}_i))$$
$$q(I):=\bigoplus_{v:\text{valuation}} \bigotimes_{i=1}^n R_i(v(\vec{x}_i))$$

[GKT07] observed that different database semantics can be unified at the level of Sum-of-Product computation over various semirings.

$$q(i) := -R_1(\vec{x}_1), R_2(\vec{x}_2), \dots, R_n(\vec{x}_n)$$
$$q(i) := \bigvee_{v: \text{valuation}} \bigwedge_{i=1}^n R_i(v(\vec{x}_i))$$
$$q(i) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^n R_i(v(\vec{x}_i))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

[GKT07] observed that different database semantics can be unified at the level of Sum-of-Product computation over various semirings.

$$q(i) := -R_1(\vec{x}_1), R_2(\vec{x}_2), \dots, R_n(\vec{x}_n)$$
$$q(i) := \bigvee_{v: \text{valuation}} \bigwedge_{i=1}^n R_i(v(\vec{x}_i))$$
$$q(i) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^n R_i(v(\vec{x}_i))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

Set semantics \leftrightarrow ({TRUE, FALSE}, \lor, \land)

[GKT07] observed that different database semantics can be unified at the level of Sum-of-Product computation over various semirings.

$$q(i) := -R_1(\vec{x}_1), R_2(\vec{x}_2), \dots, R_n(\vec{x}_n)$$
$$q(i) := \bigvee_{v: \text{valuation}} \bigwedge_{i=1}^n R_i(v(\vec{x}_i))$$
$$q(i) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^n R_i(v(\vec{x}_i))$$

Example

Set semantics \leftrightarrow ({TRUE, FALSE}, \lor, \land) Bag semantics \leftrightarrow ($\mathbb{N}, +, *$)

Example

- ・ロト ・ 週 ト ・ ヨト ・ ヨー ・ のへぐ

Example

Given an edge-weighted graph G = (V, weight)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example

Given an edge-weighted graph G = (V, weight)

 $\mathsf{Compute} \bigvee_{V' \subseteq V, |V'| = k} \bigwedge_{\{v, w\} \in V'} \mathsf{weight}(\{v, w\}) \leftrightarrow \mathsf{Boolean} \ k\text{-clique}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Given an edge-weighted graph G = (V, weight)

Compute $\bigvee_{V' \subseteq V, |V'|=k} \bigwedge_{\{v,w\} \in V'} \operatorname{weight}(\{v,w\}) \leftrightarrow \operatorname{Boolean} k$ -clique Compute $\min_{V' \subseteq V, |V'|=k} \sum_{\{v,w\} \in V'} \operatorname{weight}(\{v,w\}) \leftrightarrow \operatorname{Minimum} k$ -clique

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Given an edge-weighted graph G = (V, weight)

 $\begin{array}{l} \text{Compute } \bigvee_{V' \subseteq V, |V'| = k} \bigwedge_{\{v,w\} \in V'} \text{weight}(\{v,w\}) \leftrightarrow \text{Boolean } k\text{-clique} \\ \text{Compute } \min_{V' \subseteq V, |V'| = k} \sum_{\{v,w\} \in V'} \text{weight}(\{v,w\}) \leftrightarrow \text{Minimum } k\text{-clique} \\ \text{Compute } \sum_{V' \subseteq V, |V'| = k} \prod_{\{v,w\} \in V'} \text{weight}(\{v,w\}) \leftrightarrow \text{Counting } k\text{-clique} \end{array}$

Example

Given an edge-weighted graph G = (V, weight)

Compute
$$\bigvee_{V' \subseteq V, |V'|=k} \bigwedge_{\{v,w\} \in V'} \operatorname{weight}(\{v,w\}) \leftrightarrow \operatorname{Boolean} k$$
-clique
Compute $\min_{V' \subseteq V, |V'|=k} \sum_{\{v,w\} \in V'} \operatorname{weight}(\{v,w\}) \leftrightarrow \operatorname{Minimum} k$ -clique
Compute $\sum_{V' \subseteq V, |V'|=k} \prod_{\{v,w\} \in V'} \operatorname{weight}(\{v,w\}) \leftrightarrow \operatorname{Counting} k$ -clique

Our hardness reduction from *k*-clique is semiring-oblivious.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Outline

Clique Embedding Power

Decidability and Mixed Integer Programming Formulation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Conditional Lower Bound

Tightness & Gap

Future Work

Clique Embedding Power, I

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from [k] to $\mathcal{P}(\mathcal{V}) \setminus \emptyset$ such that (1) $\forall v \in [k], \psi(v)$ induces a connected subhypergraph, and (2) $\forall v, u \in [k], \psi(v), \psi(u)$ touch in \mathcal{H} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from [k] to $\mathcal{P}(\mathcal{V}) \setminus \emptyset$ such that (1) $\forall v \in [k], \psi(v)$ induces a connected subhypergraph, and (2) $\forall v, u \in [k], \psi(v), \psi(u)$ touch in \mathcal{H} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from [k] to $\mathcal{P}(\mathcal{V}) \setminus \emptyset$ such that (1) $\forall v \in [k], \psi(v)$ induces a connected subhypergraph, and (2) $\forall v, u \in [k], \psi(v), \psi(u)$ touch in \mathcal{H} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

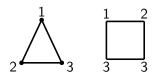
Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from [k] to $\mathcal{P}(\mathcal{V}) \setminus \emptyset$ such that (1) $\forall v \in [k], \psi(v)$ induces a connected subhypergraph, and (2) $\forall v, u \in [k], \psi(v), \psi(u)$ touch in \mathcal{H} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○



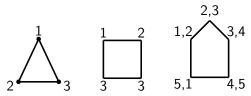
Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from [k] to $\mathcal{P}(\mathcal{V}) \setminus \emptyset$ such that (1) $\forall v \in [k], \psi(v)$ induces a connected subhypergraph, and (2) $\forall v, u \in [k], \psi(v), \psi(u)$ touch in \mathcal{H} .

(日) (四) (日) (日) (日)

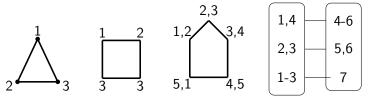


Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from [k] to $\mathcal{P}(\mathcal{V}) \setminus \emptyset$ such that (1) $\forall v \in [k], \psi(v)$ induces a connected subhypergraph, and (2) $\forall v, u \in [k], \psi(v), \psi(u)$ touch in \mathcal{H} .



Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of $\psi \text{ wed}(\psi) := \max d_{\psi}(e).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of ψ wed $(\psi) := \max_{e} d_{\psi}(e).$

Definition (Clique Embedding Power)

The *k*-clique embedding power is $\operatorname{emb}_k(\mathcal{H}) := \max_{\psi} \frac{k}{\operatorname{wed}(\psi)}$. The clique embedding power is $\operatorname{emb}(\mathcal{H}) := \sup_{k>3} \operatorname{emb}_k(\mathcal{H})$.

Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of ψ wed $(\psi) := \max_{e} d_{\psi}(e).$

Definition (Clique Embedding Power)

The k-clique embedding power is $\operatorname{emb}_k(\mathcal{H}) := \max_{\psi} \frac{k}{\operatorname{wed}(\psi)}$. The clique embedding power is $\operatorname{emb}(\mathcal{H}) := \sup_{k \ge 3} \operatorname{emb}_k(\mathcal{H})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

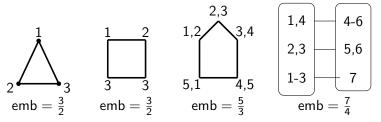
Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of ψ wed $(\psi) := \max_{e} d_{\psi}(e).$

Definition (Clique Embedding Power)

The k-clique embedding power is $\operatorname{emb}_k(\mathcal{H}) := \max_{\psi} \frac{k}{\operatorname{wed}(\psi)}$. The clique embedding power is $\operatorname{emb}(\mathcal{H}) := \sup_{k \ge 3} \operatorname{emb}_k(\mathcal{H})$.

Example



・ロト・西・・西・・ 日・ シック・

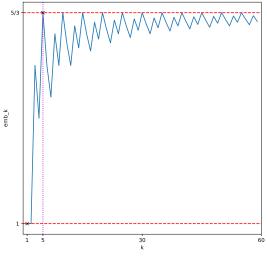
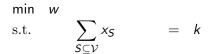


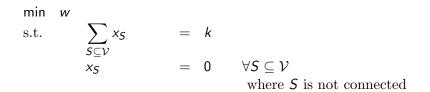
Figure: $emb_k(\mathcal{H})$ for the 6-cycle

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

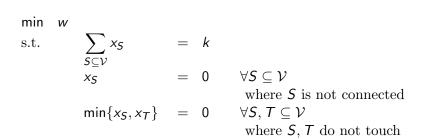
min w



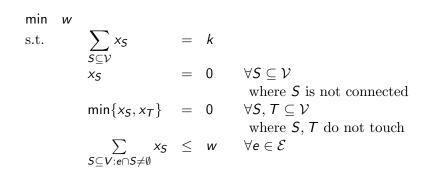
(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)



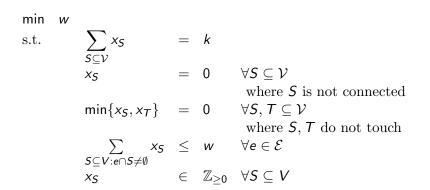
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

 $\begin{array}{rcl} \min & w \\ \text{s.t.} & & \sum_{S \subseteq \mathcal{V}} x_S & = & 1 \\ & & x_S & = & 0 & \forall S \subseteq \mathcal{V} \\ & & \text{where } S \text{ is not connected} \\ & & \min\{x_S, x_T\} & = & 0 & \forall S, T \subseteq \mathcal{V} \\ & & \text{where } S, T \text{ do not touch} \\ & & \sum_{\substack{S \subseteq V: e \cap S \neq \emptyset \\ x_S}} x_S & \leq & w & \forall e \in \mathcal{E} \\ & & x_S & \in & \mathbb{R}_{\geq 0} & \forall S \subseteq V \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\begin{array}{rcl} \min & w \\ \text{s.t.} & \sum_{S \subseteq \mathcal{V}} x_S & = & 1 \\ & x_S & = & 0 & \forall S \subseteq \mathcal{V} \\ & & \text{where } S \text{ is not connected} \\ & \min\{x_S, x_T\} & = & 0 & \forall S, T \subseteq \mathcal{V} \\ & & \text{where } S, T \text{ do not touch} \\ & \sum_{\substack{S \subseteq V: e \cap S \neq \emptyset \\ x_S}} x_S & \in & \mathbb{R}_{\geq 0} & \forall S \subseteq V \end{array}$

Theorem

Let w^* be the optimal solution of MIP. Then, $\operatorname{emb}(\mathcal{H}) = 1/w^*$. Additionally, there exists an integer $K \ge 3$ such that $\operatorname{emb}(\mathcal{H}) = \operatorname{emb}_K(\mathcal{H})$.

Conjectures related to *k*-**Clique**

Conjectures related to *k*-**Clique**

Conjecture (Combinatorial *k*-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any combinatorial algorithm to detect a k-clique in a graph with n nodes requires $n^{k-o(1)}$ time on a Word RAM model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjectures related to *k***-Clique**

Conjecture (Combinatorial *k*-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any combinatorial algorithm to detect a k-clique in a graph with n nodes requires $n^{k-o(1)}$ time on a Word RAM model.

Conjecture (Min Weight *k*-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any randomized algorithm to find a k-clique of minimum total edge weight requires $n^{k-o(1)}$ time on a Word RAM model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

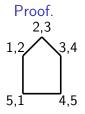
Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

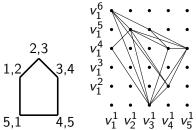
(日) (四) (日) (日) (日)



Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

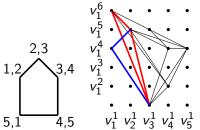
< ロ > < 同 > < 回 > < 回 >

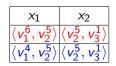


Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Proof.





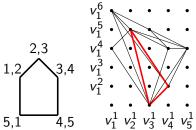
(日)

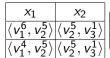
э

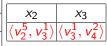
Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Proof.





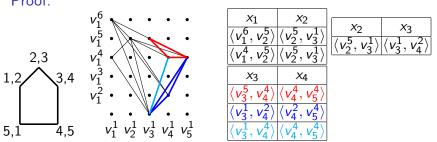


イロト イヨト イヨト

Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Proof.

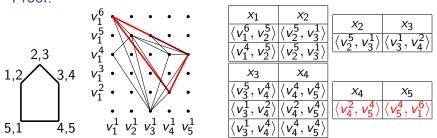


(日)

э

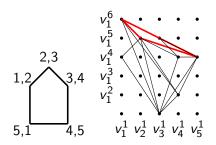
Theorem

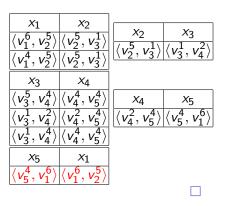
For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.



Theorem

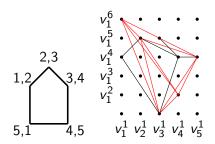
For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

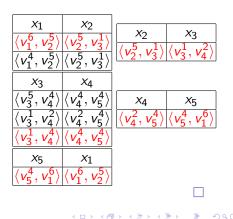




Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.





Conditional Lower Bound, III

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The proof can be adapted to tropical semiring (min *k*-clique) by assigning each pair $\{u, v\} \subseteq [k]$ to a unique hyperedge according to ψ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The proof can be adapted to tropical semiring (min *k*-clique) by assigning each pair $\{u, v\} \subseteq [k]$ to a unique hyperedge according to ψ .

Theorem

For any \mathcal{H} , $CSP(\mathcal{H})$ over tropical semiring cannot be computed via any randomized algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Min Weight k-Clique Conjecture is false.

A D N A 目 N A E N A E N A B N A C N

Tightness & Gap

	emb	subw
Acyclic	1	1
Chordal	=	=
ℓ-cycle	$2-1/\lceil \ell/2 \rceil$	$2-1/\lceil \ell/2 ceil$
$K_{2,\ell}$	$2-1/\ell$	$2-1/\ell$
K _{3,3}	2	2
A_ℓ	$(\ell-1)/2$	$(\ell-1)/2$
$\mathcal{H}_{\ell,k}$	ℓ/k	ℓ/k
Q_b	7/4	2

Table: Clique embedding power and submodular width for query classes

(ロ)、(型)、(E)、(E)、 E) の(()

<ロト < @ ト < 差 ト < 差 ト 差 の < @ </p>

Understand the gap in the boat query...

- Understand the gap in the boat query...
- Fast matrix multiplication ([NP85] solves k-clique in O(n^{k/3·ω}))...

► ...

- Understand the gap in the boat query...
- Fast matrix multiplication ([NP85] solves k-clique in O(n^{k/3·ω}))...

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References I

- Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational joins. SIAM J. Comput., 42(4):1737–1767, 2013.
- Todd J. Green, Gregory Karvounarakis, and Val Tannen.
 Provenance semirings.
 In *PODS*, pages 31–40. ACM, 2007.
- Georg Gottlob, Stephanie Tien Lee, Gregory Valiant, and Paul Valiant.
 Size and treewidth bounds for conjunctive queries.
 J. ACM, 59(3):16:1–16:35, 2012.

Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In SODA, pages 289–298. ACM Press, 2006.

References II

Martin Grohe and Dániel Marx.
 Constraint solving via fractional edge covers.
 ACM Trans. Algorithms, 11(1):4:1-4:20, 2014.

Martin Grohe.

The complexity of homomorphism and constraint satisfaction problems seen from the other side.

J. ACM, 54(1):1:1-1:24, 2007.

- Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. Computing join queries with functional dependencies. In PODS, pages 327–342. ACM, 2016.
- Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another? In *PODS*, pages 429–444. ACM, 2017.

References III

Dániel Marx.

Can you beat treewidth? Theory Comput., 6(1):85–112, 2010.

Dániel Marx.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries.

J. ACM, 60(6):42:1-42:51, 2013.

Frantisek Matús.

Infinitely many information inequalities. In *ISIT*, pages 41–44. IEEE, 2007.

 Jaroslav Nešetřil and Svatopluk Poljak.
 On the complexity of the subgraph problem.
 Commentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

References IV

- Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms: [extended abstract]. In PODS, pages 37–48. ACM, 2012.
- Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.
- 🔋 Todd L. Veldhuizen.

Triejoin: A simple, worst-case optimal join algorithm. In *ICDT*, pages 96–106. OpenProceedings.org, 2014.

Mihalis Yannakakis.
 Algorithms for acyclic database schemes.
 In VLDB, pages 82–94. IEEE Computer Society, 1981.