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How much should we trust a model prediction when the
training data is inconsistent?

Certifiable robustness as a measure of such confidence.

2 / 22



Motivation

Database
Theory

Machine
Learning

How much should we trust a model prediction when the
training data is inconsistent?

Certifiable robustness as a measure of such confidence.

2 / 22



Motivation

Database
Theory

Machine
Learning

How much should we trust a model prediction when the
training data is inconsistent?

Certifiable robustness as a measure of such confidence.

2 / 22



Inconsistent Dataset and Repair, I

Definition (Inconsistent dataset)

A dataset is called inconsistent if it violates its functional
dependency (FD) constraints.

Definition (Repair)

Given an inconsistent dataset D, a repair is a subset of D such
that it is consistent and maximal (not maximum).
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Inconsistent Dataset and Repair, II

FD: A → B
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FD: A → B

A B C label

t1 1 0 a 0

t2 1 2 b 0

t3 2 0 a 2

t4 2 5 c 1

t5 3 1 a 0

t6 4 2 d 2
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Certifiable Robustness, I

Definition (Certifiable Robustness for k-NN Classifier)

Given an inconsistent database D with labels and a test point x ,
then x is said to be certifiably robust for k-NN classifier if the
prediction of k-NN about x on any repair of D is consistent.
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Certifiable Robustness, II

A classification learning algorithm L with labels in Y takes a
labeled instance I over the schema R(A1, . . . ,Ad) as training set,
and returns a classifier which is a total function LI : Dd → Y.

Definition (Certifiable Robustness)

Let I be a labeled uncertain instance over R(A1, . . . ,Ad) and L be
a classification learning algorithm with labels in Y. We say that a
(test) point x ∈ Dd is certifiably robust in I if there exists a label
ℓ ∈ Y such that for every repair I ∈ I, LI (x) = ℓ. The label ℓ is
called a certain label for x .
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Consistent Query Answering

Definition (Repair)

Given an inconsistent instance D with FD constraint, a repair is a
subset of D such that it is consistent and maximal (not maximum).

Definition (CQA)

Given a Boolean query Q, we say that D is certain for Q, denoted
as D |= Q, if for every repair r of D, Q(r) is true.

CERTAINTY(Q): Given an inconsistent instance D and Boolean
query Q, does D |= Q?

There has been a long line of reserach in establishing dichotomies
in CQA [Wij09, Ber11, KP12, KS14, KW18, KOW21].
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Our Question; Informal

Definition (Certifiable Robustness for k-NN Classifier)

Given an inconsistent database D with labels and a test point x ,
then x is said to be certifiably robust if the prediction of k-NN
about x on any repair of D is consistent.

Question (Informal)

Given an inconsistent database D with labels and a test point x , is
x certifiably robust?
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Our Question; Formal

Definition (CR-NNp⟨R, k⟩)
Given an inconsistent labeled instance D over an FD schema R
and a test point x , is x certifiably robust for k-NN classification
w.r.t. the p-norm?

Definition (CR-NN<⟨R, k⟩)
Given an inconsistent labeled instance D over an FD schema R
and a strict ordering of the points in D w.r.t. their distance from a
test point x , is x certifiably robust for k-NN classification?

Definition (#CR-NN<⟨R⟩)
Given an inconsistent labeled instance D over an FD schema R, a
strict ordering of the points in D w.r.t. their distance from a test
point x , and a label ℓ ∈ Y, output the number of repairs for which
the k-NN classifier assigns label ℓ to x .
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Our Contributions; I

Definition (lhs Chain)

A set of FDs Σ has a left-hand-side chain (lhs chain for short) if
for every two FDs X1 → Y1 and X2 → Y2 in Σ, either X1 ⊆ X2 or
X2 ⊆ X1 [LKW21].

Example

The FD set {A → C ,B → C} does not have an lhs chain, while
the FD set {AB → C ,B → D} has an lhs chain.
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Example

The FD set {A → C ,B → C} does not have an lhs chain, while
the FD set {AB → C ,B → D} has an lhs chain.

Theorem (Decision, F. & Koutris, 22’)

Let R be an FD schema. Then, the following hold:

▶ If R is equivalent to an FD schema with an lhs chain, then
CR-NN<⟨R⟩ (and thus CR-NNp⟨R⟩) is in P.

▶ Otherwise, for any integer k ≥ 1, CR-NNp⟨R, k⟩ (and thus
CR-NN<⟨R⟩) is coNP-complete.
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Our Contributions; II

▶ Design a linear-time algorithm when the only FD constraint is
a primary key [KLW+20];

▶ Investigate Min-Repair: to find the repair with the smallest
total weight [LKR20];

▶ Investigate CR for three widely used uncertain models:

– ?-sets;
– or-sets;
– Codd-tables.
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Algorithm for decision problem CR-NN<⟨R, k⟩

Similar to the recursive algorithm in [LKR20], divided into Base
Case (FD is empty), Consensus FD (there exists an FD ∅ → A),
and Common Attribute (attribute A in the lhs of all FDs).

Idea: say we want to know whether label 1 certifiably robust, we
will then try to falsify this by finding a repair which maximizes the
difference between the numbers of top-k tuples with label i and
label 1, where i loops over all other labels.
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Algorithm for counting problem #CR-NN<⟨R⟩

Similar to the algorithm for decision problem, while building a
matrix M to keep track of the number of repairs that predicts a
given label.

Truth: the “matrix” M is multi-dimensional with size O(|D| · km),
where m is the number of labels, and to compute each entry we
need O(km) time.

Open question: can we do better?
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Hardness for decision problem CR-NNp⟨R, k⟩, I

Step 1: Reduce from SAT-3-Restricted to
Maximal-Matching of a labelled bipartite graph G .

Step 2: View a maximal matching of G as a repair of a labeled
instance D with FD schema {A → B,B → A};
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Hardness of decision problem CR-NNp⟨R, k⟩, II
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Hardness for decision problem, III

Step 1: Reduce from SAT-3-Restricted to
Maximal-Matching of a labelled bipartite graph G .

Step 2: View a maximal matching of G as a repair of a labeled
instance D with FD schema {A → B,B → A};

use fact-wise
reduction to transform D into FD schema R.

Step 3: Encode the entries of D into numerics so that everything
(p-norm values) goes through.
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Hardness for counting problem

Theorem

If the FD schema R is not equivalent to some FD schema with an
lhs chain, then #CR-NN<⟨R⟩ is #P-hard.

Proof.

Livshits, Kimelfeld, and Wijsen showed that it is #P-hard to count
the number of repairs. Now, given any instance D, we can pick
any ordering of the points and assign the same label ℓ to every
tuple. Then, the number of repairs that predict label ℓ is the same
as the total number of repairs.
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Algorithm when single primary key (Decision)

Karlas et al. gave two algorithms, SortScan (SS) and MinMax
(MM), for “certain prediction” under the Codd table model.

This is the certifiable robustness question under a further
restriction that any two tuples in the same block have the
same labels.

Our algorithm Karlas et al.’s

Time Complexity O(|D| ·m) O(|D| ·m) for MM
Ω(|D| ·

(
m+k−1

k

)
) for SS

Applicability any k and m MM only for m = 2
only under the restriction
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Optimal Repairs Revisited, I

Opt-Repair: to find the repair with the largest total weight
where each tuple is associated with a positive weight [LKR20].

Min-Repair: to find the subset repair that has tuples with the
smallest total weight.

Forbidden-Repair: given an inconsistent instance D and a
subinstance S ⊆ D, does there exist a subset repair I ⊆ D such
that I ∩ S = ∅?
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Optimal Repairs Revisited, II

Lemma

There exists a many-one polynomial time reduction from
Forbidden-Repair⟨R⟩ to the complement of CR-NN<⟨R, 1⟩.
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Open Problems

Certifiable robustness

▶ for other widely used classification algorithms, such as
decision trees, Naive Bayes classifiers and linear classifiers?

▶ when the instance D is not a single table but the join of
several tables?

▶ for other integrity constraints, e.g. inclusion dependencies?

More on pratical side

▶ deriving fast heuristic or approximation algorithm for
CR-NN⟨R, k⟩ or #CR-NN⟨R, k⟩ (under some assumption on
simple FD schema structure).

▶ deriving fast heuristic or approximation algorithm for (almost
uniformly) sampling a repair that predicts a certain label.

▶ . . .
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Thank You!
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