A Prioritized Trajectory Planning Algorithm for Connected and Automated Vehicle Mandatory Lane Changes

Sep 19-22, 2021, Indianapolis, USA, 24th IEEE ITSC
Authors: Nachuan Li*, Austen Z. Fan, Riley Fischer, Wissam Kontar and Bin Ran

Presenter: Nachuan Li (+1) 6085902155 nli63@wisc.edu
University of Wisconsin-Madison Department of Civil and Environmental Engineering

Setting

-Macroscopic routing decision given for each CAV
-Mandatory lane changes (MLCs) guided by routing decisions
-Geometry
-An innermost CAVH dedicated lane with CAVs only
-Other HDV lanes with mixed traffic
-A diverging zone (Zone B) allowing only lane changes of CAVs from dedicated lane into HDV lane
-CAVH intelligence level 3
-Partial Automation
-Driver Assistance System
-Hands off in dedicated lane
-V2V and V2I communication
-Roadside units detect instantaneous information of all vehicles
-System communicates with and controls CAVs in dedicated lane

Problem Statement

Customers: CAVs executing MLCs from diverging zone into HDV lane

Service: Trajectory Planning, Preparation for MLCs

Our Algorithm

- Prioritized: CAVs near the end of the diverging zone given priority in planning
- System-Optimal: Minimizes the total travel time for CAVs in the diverging zone for each decision making
- MLC-Aware: Gives time and space for consecutive MLCs into the off-ramp
- Safety-Guaranteed: Ensures collision avoidance and gap acceptance

Motivation: MLC

Importance:

-Guided by routing decisions
-A major reason for congestion at bottlenecks

Challenges:

-Limited length of the the diverging zone
-Urgency posed by routing decision
-Unpredictability of HDVs on the adjacent lane
-Lacks data set
-Few studies considering MLC for CAVs on a system level

Assumptions

-Passenger cars only in the network

-Offers planning for only processes in the diverging zone

Definitions: Kinematic Parameter

Kinematic Parameter: A parameter chosen by a vehicle that affects its motion
Sufficient Tuple of Kinematic Parameters: A tuple of kinematic parameters given which the position is a function of time

Definitions: Space Time Slot (STS)

Space Time Slot (STS): An ordered pair of time and position

Category\Factors to be satisfied	Central Vehicle Kinematic Parameters	Longitudinal Collision Avoidance	Gap Acceptance on HDV Lane
Reachable STS	Exists at least 1 sufficient tuple	N/A	N/A
Attainable STS	N/A	Satisfied	N/A
Joinable STS	N/A	N/A	Satisfied
Candidate STS	Exists at least 1 sufficient tuple	Satisfied	Satisfied

Definitions: Trajectory

Feasible Trajectory: A trajectory whose STS's are all reachable, attainable under the same sufficient tuple of kinematic parameters, and ends with a candidate STS.

Algorithm: Framework

Sorting and routing Classification:

- Sorting: Sort the position of CAVs in the diverging zone with descending order
- Classification: Classify the routing decisions of CAVs
- Extract HDVs: Based on HDVs' location extract those that could influence MLC C'AVs' decisions
- Predict HDVs: Predict or Interpolate the future positions of HDVs

Start iteration:

- \quad Start iterating over each MLC CAV in the diverging zone

Algorithm: Framework

Example:

- 3 sufficient tuples of kinematic parameters available
- Dashed Line: HDV trajectories
- Black Arrow: Leading CAV in the Diverging Zone
- Shaded Area: Joinable STS's
- Red Line: Reachable, but not Attainable
- Yellow Line: Reachable, Attainable but not Joinable
- Green Line: Candidate STS's
- OB: A Feasible Trajectory

Feasible Trajectory: A trajectory whose STS's are all reachable, attainable under the same sufficient tuple of kinematic parameters, and ends with a candidate STS.

Case Study

Car Following Model: Spring Mass Damper Model with no Leader

- Only 1 element in each sufficient tuple of kinematic parameter

Cost Function:

1) Total delay in the diverging zone

+

2) Expected detour time if a CAV fails to exit at the target off-ramp

HDV Speed Prediction Model: Uniform Speed Prediction

- Advantage: Do not need to perform training
- Disadvantage: Lacks Accuracy

Simulation

Geometry:

- An inner CAVH dedicated lane
- An outer HDV lane
- 1500 m of diverging zone

Initialization:

- 5 CAVs with initial speed of $100 \mathrm{~km} / \mathrm{h}$ and position randomized in the first 500 m of diverging zone
- 8 HDVs with initial speed between $60 \mathrm{~km} / \mathrm{h}$ and $100 \mathrm{~km} / \mathrm{h}$, desired speed between $80 \mathrm{~km} / \mathrm{h}$ and $100 \mathrm{~km} / \mathrm{h}$, and random initial position in the HDV lane
- Vehicles in HDV lane use Newell car-following model

Comparison:

- Prioritized System-Optimal Algorithm vs. Gap Acceptance Model

Results: Position-Time Diagram

Prioritized System-Optimal Algorithm

Gap Acceptance Model (Theoretical)

Results: Speed-Time Diagram (Diverging Zone)

Prioritized System-Optimal Algorithm

Gap Acceptance Model (Theoretical)

Results: Metrics

Metric/Model	Gap Acceptance Model	Prioritized System- Optimal Algorithm
Average Speed in Diverging Zone	$63 \mathrm{~km} / \mathrm{h}$	$85 \mathrm{~km} / \mathrm{h}$
Average Distance Driven before a MLC	257.82 m	162.1 m
Average Time Driven before a MLC	15.60 s	7.16 s
Calculation Time per CAV	N/A	0.03 s

Results: Discussions

Advantages of Prioritized System-Optimal Algorithm:

- Produced relatively smooth speed change
- Earlier time taken before MLC executions
- Earlier distance driven before MLC executions
- Higher average speed in the diverging zone
- Efficient utilization of spacing in HDV lane
- Relatively low run-time

Future Research

Sources of Improvements:

- Examine the application of other car-following models
- Test on other cost functions
- Apply machine learning to forecast trajectories in the HDV lane
- Carry out a larger-scaled simulation to further examine the efficiency
- Consider semi-trucks and buses in the algorithm

Thanks for Listening!

Presenter: Nachuan Li (+1)608590 2155 nli63@wisc.edu

University of Wisconsin-Madison Department of Civil and Environmental Engineering

