Join Queries with Negation
(and Aggregation)

Conjunctive Queries with Negation and Aggregation: A Linear Time Characterization [PODS’24]
Hangdong Zhao, Austen Fan, Xiating Ouyang, Paraschos Koutris

WISCONSIN

IIIIIIIIIIIIIIIIIIIIIIIIIIII

https://dblp.org/pid/307/7991.html
https://dblp.org/pid/279/3249.html
https://dblp.org/pid/183/6263.html
https://dblp.org/pid/49/8316.html

This Talk

Much progress has been over the last years on faster join algorithms
e worst-case optimal joins
e constant-delay enumeration

e tree decompositions & width measures
e PANDA

What happens when we add negation (and aggregation)?

Conjunctive Queries (CQs)

head body
O(xp) = [\ Rg(xg)
Keé&
e variables x = {x;, ..., X, } e Boolean: ' = ¢
e hypergraph ([n], &) o full: F =[n] = {1,2,..., nj

o for a hyperedge E C [n] : X = {X;};cf

Example: Triangle

Ox1,x3) = R(x(, %) A S, x3) A T(x(, X3)

Conjunctive Queries + Negation (CQNs)

head positive negative

Oxp) = /\ Rex) A [\ —Relxy)

Ke&t Ke&~

e We need a safety condition: the positive atoms must contain all variables

e The hypergraph ([n], &, &) is called the signed hypergraph

Example: Open Triangle

O0,) = R(xy, %) A Sy, x3) A 7 T(xy, X3)

Example: 3-independent set

Q0 = V(x;) A V(xy) A V(x3) A R(x(,x5) A " R(x5, x3) A T R(X{, X3)

If all positive relations are singleton, we will sometimes ignore them and just write

00 = "R(xy, %)) A R(x,, x3) A " R(xy, X3)

Some Background

a-acyclicity

R(x, x,)
00 = R(xy,x5) A S(x, x3) A T(x, X4, X5) A U(xs, X¢)

S(xy, X3)

/N

T(x3, x4, Xs5) U(x3, X¢)

The structure of a-acyclicity

A node vis an a-leaf if the set {K € & | v € K} contains a maximum element (pivot)

00 = R(xy, %) A S(x, x3) A T(x3, x1) A U(xq, X5, X3)

Xy 2 RO, x00) NS, x3) A T(xs,x0) AUy, x5, X3)
Xy @ R(xp,x5) A S, x5) A T(xz,x0) A U(xy, X5, X3)
X3 0 R(x(,x5) A S, x5) AT, x0) AUy, x5, X3)

All variables are a-leaves for this hypergraph!

10

The structure of a-acyclicity

A CQ is a-acyclic iff it admits an a-elimination sequence. At every step:
1. find any a-leaf x (with pivot R)
2. remove any relation with variables contained in R

3. remove x from R

OO0 = R(xy, %)) A S(xy, x3) A T (x5, x1) A U(xy, X5, X3)
x;is an a-leaf : R(x;, %) A S(x5, x3) A T(x5,x,) A U(xy, x5, X3)

X9 is an a-leaf : S(.Xz, .X3) N\ U(Xz, XS)
X5 is an a-leaf : U(x;)

11

A linear-time algorithm

We follow the a-elimination sequence. At every step:
1. find any a-leaf x (with pivot R)
2. for any T with variables contained in R, update R < R X T and remove T

3. project out x from R

12

A linear-time algorithm

00 = R(xy, %) A S(x, x3) A T(x3, x1) A U(xq, X5, X3)

X1 is an a-leaf : R(xl, Xz) N\ S(.Xz, .X3) N\ T(X3, Xl) N\ U(.xl, X9, .X3)
X, is an a-leaf : S0y, x3) A U(x,, X3)

X5 is an a-leaf : U(x;) "o

A linear-time characterization for CQs

| Yannakakis “81] For an a-acyclic CQ with input size /V:
1. ifitis Boolean, it can be evaluated in linear time O(NN)

2. if it is full, the output can be enumerated with constant delay after
linear-time preprocessing, with total time O(N + OUT)

3. ifitis full, we can count the answers in linear time O(N)

Moreover, no other CQs admit linear-time algorithms under widely
believed conjectures

14

What is the linear-time characterization for
CQs with negation?

The Inclusion-Exclusion Principle

Q(x1, X%, X3) = R(x1, %) A S(x, x3) A 7 1(xy, X5, X3)

We can rewrite this query using a difference operator:

0 = (R(xl,xz) A S(x, x3)) — (R(xl,xz) A S, x3) A T(xq, X5, x3))
Q1: acyclic CQ Q2: acyclic CQ

40 = #0, — #0,

16

The Inclusion-Exclusion Principle

0x) = [\ Rex) A J\ ~Ry(xg)

Ke&™ Ke&~

We can generalize this idea via the inclusion-exclusion principle [Brault-Baron "13]:

0=), (-DFl#Qy

SC&™
where Qg is the CQ with hypergraph ([n], & U S)

17

Signed-acyclicity

If the hypergraph & U S is a-acyclic for any § C &~ then #Q (and thus Boolean Q) can
be evaluated in linear time (data complexity)

e Caveat #1: the algorithm is exponential in the size of the query

e Caveat #2: we cannot use this idea to perform constant-delay enumeration

A CQ with negation is signed-acyclic if & U S is a-acyclic for any S C &~

|Brault-Baron "13]

18

Signed-acyclicity: examples

v/ Q0 =R(x;,x) A Sy, x3) A T(xz, %) A U(xy, x5, X3)
Q00 = R(xy, %) A S(x5,x3) A T(x3,x1) A U(Xq, X5, X3)

00 = R(x(, x5) A 85, x3) A T (x5, x) A U(X(, X5, X3)

&/ 00 =R, x) AS0x,x3) A T(x3,x,)

19

B-acyclicity

Suppose all positive relations are unary (arity = 1)

Then signed-acyclicity is equivalent to: any subset of & is a-acyclic

This is equivalent to the notion of 3-acyclicity [Duris "12, Brault-Baron "14]
Existing algorithms for 3-acyclic CQNs include polylogarithmic factors

20

A Linear-Time Algorithm

The structure of signed-acyclicity

A node v is a signed-leaf if there exists K € &* (pivot) such that:

e a-property: every positive edge that contains v is contained in K

e B-property: {(N€ & | veE N,NC K} U {K} forms a total order w.r.t.
inclusion with K as the smallest element

Q() — A(.xl,.x2, .X3) AN U(.X3,X4) AN _'V(X4) AN _'R(Xz, X3,X4) AN _'S(.xl,x2, .X3,.X4)

pivot for x,

22

The structure of signed-acyclicity

A CQ is signed-acyclic iff it admits a signed-elimination sequence. At
every step:

1. find any signed-leaf x (with pivot R)

2. remove any relation with variables contained in R (a-property)

3. remove x from everywhere (3-property)

00 = A(xy, X9, X3) A U(xs, x4) A VI(xy) A R(x, x5,) A S(x, X5, X3, Xy)

23

A linear-time algorithm

We follow the signed-elimination sequence. At every step:
1. find any signed-leaf x (with pivot R)

2. Semi-join with R and remove any relation with variables contained in R
(a-property)

3. “Remove” x from every relation that contains it (3-property)

[tem #3 is the challenging one!

24

The Key Idea

00 =A(x) ABx,) A R(x;,x,) e We cannot afford to scan A for every value of B
e We build a data structure that encodes the “skips”

“‘
o*
.
.
.
""""""""""""""""""""

.....
. L
.* "
. L]
. L)
* .,
3 C ‘ .
. .
. . . . - .
. . * . * .
- . - . * .
. . .
* o * . * 3
* . . AN * ’
.
.
.
.
. .
* .
. .
. .
. .
.
.
.....
" .*
" .t

25

The Key Idea

d
00 = A(x)) A B(x,) A "R(x,x,) P
B C.
1 a :
\\ start 1 2 3 4 5 end
2 b e
b
3 c To “project out” x; from R, we only keep the values that
generate no answer (i.e. {d})
A d B | a R | d
/ | b
Q') = B(xp) A 7R(x,) -
5 e
d
26 (&

Enumeration

Q(x;,x) = A(x)) A B(x,) A=R(x,xp)

......
.......
* .
.....
* .
* .,
* G

. ..
. ..
‘ .
’ .
' .
’ .
' .
. .
.
.
.
.
.
.
.
.
-
3
.
-
.
.
.
3
‘ .
. .
. . . .
* . .
* . ..
0
. o* =3 . .
. '
* ’
*) '
- ‘
.
: * - R .
LI . ‘ .
* o .) .
* o . ..) |
-
-
*
.
: *
: .
' .
* .
) .
* .
* .
* .
* .
* .
’ .
* .
LN L.
‘. .
«*

L]

L]

.. ..
* .
LI .

., .
......

The skipping data structure can also be used to
d enumerate all results with constant delay

27

A linear-time characterization

For a signed-acyclic CQ with negation with input size V-:
1. ifitis Boolean, it can be evaluated in linear time O(NN)

2. if it is full, the answers can be enumerated with constant delay after
linear-time preprocessing, with total time O(N + OUT)

Moreover, the algorithms have polynomial combined complexity

28

What about projections?

Oxp) = /\ Re(xp) A [\ —Relxy)

Ke&™ Ke&~

If the signed hypergraph ([n], &7, & U {F}) is signed-acyclic, the output

can be enumerated with constant delay after linear-time preprocessing
e This naturally captures the notion of free-connex CQs

e Any CQN not in this class does not admit a linear-time algorithm
under widely believed conjectures

29

Aggregation

Counting: example

Ox,) = A(x)) A B(xy) A R(x, Xx,)

For every value of B, count the number of nodes from A
that are not connected with it

31

Counting: example
d

R

. .

........

.
1111
[.
. .
. .
. .
. .
. .,
* .,
.

Ox,) = A(x;) A B(x,) A 7 R(x;, x,)

""""""""""""""

. L]
.....
. L]
* .,
. .

. ‘e
. e
* -
. .
A4 .
* .
. .
. S
.
.
.
.
.
.
.
.
.
-
*
.
.
.
.
-
. .
- .
* * * *
- M ‘e
.
. .* o . .
* . . .
3 . * . . -
* . . . 3 .
. * . ‘e . .
- o* . . * .
. * - . * .
. . . * .
LN . . .
* o * . 3
o . . e * ,
.
.
.
.
. .
- *
. .
. -
- -
. -
. .
. *
. *
. .
- *
. .
‘. .*
.. .*
.

.

.

., o
. .
" .*

., .*
......

3 C We can count by using the skipping DS to find the
correct intervals and then compute the partial counts:

4 d a:[l—-73]
// b [3]
c:[1—-2],[4 - 3]

32

Summing: example

RN

s "

. ",
.
.* ",
.* .
. " .
[.
. .
. .
. .
. .
. .
* .
.

Ox,) = A(x;) A B(x,) A 7 R(x;, x,)

“‘
o*
. .
* .,
Y L2
.
. .
. .
.
. .
. .
. ..
.
* .
.
.
.
.
‘e
.
-
IIIIIIIIIIII *
..................... -
. L] .] .
..... *
.
. L} .
. * " .
N «* ., .
. P e . . ‘.
* * *
- * ‘e ‘e
.
. O S -
. .
- . . . - .,
. o* . ®e * .
- - . . " .
- . . . -
N . IS . - .
- . - . * .
. . .
* o * . * 3
o . . e * ,
.
.
.
.
. .
- *
. .
. -
- -
. -
. .
. *
. *
. .
- *
. .
‘. .*
.. .*
. .
.. “
.. .
.
" .*
., .*

e We can build a data structure in linear time such that

4 d we can calculate each partial sum in constant time
// (OFFLINE PARTIAL SUMS)
5 a Vv Vv 1%
; I=u =1 =1

3

General Aggregation

a4
Q(x,) = Dy, A(x)) A B(xy) A 7R(xy, x;) T
e ¢
\\ start 1 2 3- 4 5 end
2 b e
. b,
3 ; For any aggregation, where @ forms a semigroup

e we can compute the partial sums in constant time

4 d e but we need preprocessing time O(N - a(N))
// e a(N) is the inverse Ackermann function

e uses deep results for RangeSum [Yao '82, Chazelle ‘91]

34

Aggregation in Arbitrary CONs

O(xXp) = By, e+ R(Xg) A Qe s-Rx(Xg)

positive negative
factor factor

e Semiring structure (D, @, ® ,0, 1)

e positive factor: a list of tuples with their value in D; any tuple outside
the list has value 0

e negative factor: a list of tuples with their value in D; any tuple outside
the list has the same default value ¢ £ ()

35

Aggregation in Arbitrary CONs

O(xXp) = By, e+ R(Xg) A Qe s-Rx(Xg)

For any semiring, if the signed hypergraph ([n], &, & U {F}) is free-
connex signed-acyclic, the output can be enumerated with constant delay
after preprocessing time O(N - a(N))

o If the semiring has an additive inverse, the preprocessing time is O(N)

e The general algorithm follows the elimination sequence, but
maintaining the aggregates becomes very complex

36

Other Remarks

Query Difference

Our techniques also characterize the linear-time behavior for the difference of two CQs
with the same output schema: Q = Q, — O, [Hu & Wang 23]

0 = (R(xl,xz) A S(x,, x3,x4)) — (T(xl,xz) A U(x,, x3))
= (R(xl,xz) A S, X3, X,) A —IT(xl,xz)) U (R(xl,xz) A Sy, X3, X,) A T U(X,, x3))

Since both resulting CQNs are signed-acyclic, we can enumerate their union with
constant-delay enumeration after linear time preprocessing

38

Relational Division

e Suppose we want to compute relational division: R(x, y)/S(x)
o We can rewrite using RA: 7,(R) — z,((7,(R) X §) — R)
o Define R'(y) = 7,(R), which can be computed in linear time

e The RHS of the difference is the query Q(y) = R'(y) A S(x) A = R(x, y) which is free-
connex signed-acyclic and thus can be computed in linear time!

Corollary: the division operator can be computed in linear time

39

Open Questions

What are the appropriate measures of width to have tractability for CQNSs?
e nest-set width [Lanzinger "21]

e generalizations of fractional hyper tree width?
Do our algorithms translate to practice?

e query rewriting techniques [Hu & Wang "23]

e data structure implementation

40

