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The Sum-Product Polynomial

variables X = {xy,...,x,}
e Conjunctive Query Q with hypergraph ([n], &): O(X) « /\ Rp(X)
e SemiringS = (D, ,®,0,1) Ke&
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Examples of Polynomials
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Semiring Circuits

P=xRVYR2)DPDxRyRw)

output gate /69\
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* circuit size := number of gates / \
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- input gates are variables

- inner gates have fan-in two

e when fan-out is one, it is a formula



What is the smallest semiring circuit we can
construct for the sum-product polynomial?



Why Circuits?

Circuits are computational models that capture algorithms that solely
exploit the algebraic structure of the problem

Circuits are concise representations of the sum-product polynomial
interpreted over the given semiring (captures the provenance)



Circuit Construction: Attempt #1

We can always construct a circuit of size linear to the output size | Q(/) |
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Circuit Construction: Attempt #2

We can use the distributive property in a semiring to factorize computation!
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Factorization via Tree Decompositions

In fact, we can guide factorization using any tree decomposition of the query

upper bound: O(N™(Q))
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This construction corresponds to a d-representation [Olteanu & Zavodny "15]



Circuit Construction: Attempt #3

We can use multiple tree decompositions to guide the circuit construction for
different parts of the input data

Q@xy, Xy, X3, X4) — R(x1, %) A S(X5, x3) A T(x3,x4) A U(xy, X;)
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The Upper Bound

For any idempotent semiring, we can construct a circuit that computes the
sum-product polynomial with size O(N®"(©))

entw(Q) = max min max h(y(v)) [Khamis et al. "16]
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over all entropic functions
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e [dempotency is necessary (the same output can occur in many decompositions)

e The circuit can be constructed in time linear to the output size!



The Lower Bound




Lower Bound: Key Ideas
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If the query has no self-joins, the sum-product polynomial is
homogeneous and multilinear

Then, the polynomial produced by the circuit is identical to the sum-
product polynomial [Jukna "15] (this fails for the Boolean semiring)

Hence, we can precisely trace each monomial (output) in the circuit!



Lower Bound: Key Ideas

The parse tree of each monomial/ output corresponds to a tree decomposition
which can be constructed by extracting the “type” of each ®-gate
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Lower Bound: Key Ideas

e The number of ®-gates will be bounded by the output of any disjunctive
Datalog rule that chooses one bag from each decomposition

e Use the worst-case construction for disjunctive rules [Khamis et al. "16]
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More in the Paper

We show that the same upper & lower bounds hold if we add
constraints (degree-aware entropic width)

We show how to extend the bounds for circuits with multiple
outputs (non-Boolean CQs)

We show how to prove tight upper & lower bounds for circuits that
are formulas (inflationary entropic width)

O has semiring circuits of linear size < Q is acyclic
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Open Questions

e What is the upper bound for non-idempotent semirings?
e Can we show lower bounds for Boolean semirings?

e What happens when the query has self-joins?
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Thank you!



