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The Sum-Product Polynomial

• Conjunctive Query  with hypergraph :

• Semiring 

• Instance  

Q ([n], ℰ)
𝕊 = (D, ⊕ , ⊗ ,0, 1)

I

variables x = {x1, …, xn}

Q(x) ← ⋀
K∈ℰ

RK(xK)

pℋ
I := ⊕t∈Q(I) ⊗e∈ℰ xe

t[e]

 xK = {xi}i∈K



Examples of Polynomials
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Q(x1, x2, x3) ← R(x1, x2) ∧ S(x2, x3) R
(a1, a2)
(b1, a2)
(c1, c2)

S
(a2, a3)
(a2, b3)
(c2, c3)  xS

c2c3

arithmetic semiring 

Boolean semiring

(ℕ, + , ⋅ ,0,1)

({0,1}, ∨ , ∧ ,0,1)

pQ
I = xR

a1a2
⋅ xS

a2a3
+ xR

a1a2
⋅ xS

a2b3
+ xR

b1a2
⋅ xS

a2a3
+ xR

b1a2
⋅ xS

a2b3
+ xR

c1c2
⋅ xS

c2c3

pQ
I = (xR

a1a2
∧ xS

a2a3
) ∨ (xR

a1a2
∧ xS

a2b3
) ∨ (xR

b1a2
∧ xS

a2a3
) ∨ (xR

b1a2
∧ xS

a2b3
) ∨ (xR

c1c2
∧ xS

c2c3
)

 xR
b1a2



Semiring Circuits
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p = (x ⊗ y ⊗ z) ⊕ (x ⊗ y ⊗ w)

x y

z w⊗

⊗⊗

⊕

input gates are variables

inner gates have fan-in two

output gate

• circuit size := number of gates
• when fan-out is one, it is a formula 



What is the smallest semiring circuit we can 
construct for the sum-product polynomial?



Why Circuits?
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1. Circuits are computational models that capture algorithms that solely 
exploit the algebraic structure of the problem

2. Circuits are concise representations of the sum-product polynomial 
interpreted over the given semiring (captures the provenance)



Circuit Construction: Attempt #1
We can always construct a circuit of size linear to the output size |Q(I) |

xR
a1a2

⊗

⊕

xS
a2a3

xR
a1a2

⊗

xS
a2b3

xR
b1a2

⊗

xS
a2a3 xR

b1a2

⊗

xS
a2b3

xR
c1c2

⊗

xS
c2c3

⊕

⊕

⊕

upper bound: O(Nρ*(Q))

pQ
I = xR

a1a2
⋅ xS

a2a3
+ xR

a1a2
⋅ xS

a2b3
+ xR

b1a2
⋅ xS

a2a3
+ xR

b1a2
⋅ xS

a2b3
+ xR

c1c2
⋅ xS

c2c3

Q(x1, x2, x3) ← R(x1, x2) ∧ S(x2, x3)



Circuit Construction: Attempt #2

We can use the distributive property in a semiring to factorize computation!

xR
a1a2

⊗

⊕

xS
a2a3

xS
a2b3

xR
b1a2

⊕

⊕ xR
c1c2

⊗

xS
c2c3

pQ
I = xR

a1a2
⋅ xS

a2a3
+ xR

a1a2
⋅ xS

a2b3
+ xR

b1a2
⋅ xS

a2a3
+ xR

b1a2
⋅ xS

a2b3
+ xR

c1c2
⋅ xS

c2c3



Factorization via Tree Decompositions

In fact, we can guide factorization using any tree decomposition of the query 

xR
a1a2

⊗

⊕

xS
a2a3

xS
a2b3

xR
b1a2

⊕

⊕

xR
c1c2

xS
c2c3

upper bound: O(N𝖿𝗁𝗐(Q))

⊕

0

⊕

0

⊗

This construction corresponds to a d-representation [Olteanu & Zavodny ’15]

12 23
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Circuit Construction: Attempt #3
We can use multiple tree decompositions to guide the circuit construction for 
different parts of the input data

Q(x1, x2, x3, x4) ← R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x4) ∧ U(x4, x1)

U(a4, a1)

⊗

⊕

T(a3, a4)

R(a1, a2)

⊗

S(a2, a3)

U(b4, a1)

⊗

T(a3, b4)

⊗

R(c1, c2)

⊗

U(c4, c1) S(c2, c3)

⊗

T(c3, c4)

⊗

⊕

14

134

1434 34

134

13

12 23

123

13

12 14 23 34

124 234

24

14 34

134

12 23

123

13

12 14

124

23 34

234

24



The Upper Bound

For any idempotent semiring, we can construct a circuit that computes the 
sum-product polynomial with size O(N𝖾𝗇𝗍𝗐(Q))

𝖾𝗇𝗍𝗐(Q) = max
h∈Γ*n ∩𝖤𝖣

min
(𝒯,χ)∈𝖳𝖣

max
v∈V(𝒯)

h(χ(v))

over all entropic functions

best tree decomposition

largest bag

• Idempotency is necessary (the same output can occur in many decompositions)
• The circuit can be constructed in time linear to the output size!

[Khamis et al. ’16]



The Lower Bound

For the tropical  and arithmetic semiring, any circuit that 
computes the sum-product polynomial must have size 

(ℤ, min, + , + ∞,0)
Ω(N𝖾𝗇𝗍𝗐(Q))



Lower Bound: Key Ideas

1. If the query has no self-joins, the sum-product polynomial is 
homogeneous and multilinear

2. Then, the polynomial produced by the circuit is identical to the sum-
product polynomial [Jukna ’15] (this fails for the Boolean semiring)

3. Hence, we can precisely trace each monomial (output) in the circuit! 

pQ
I = xR

a1a2
⋅ xS

a2a3
+ xR

a1a2
⋅ xS

a2b3
+ xR

b1a2
⋅ xS

a2a3
+ xR

b1a2
⋅ xS

a2b3
+ xR

c1c2
⋅ xS

c2c3



Lower Bound: Key Ideas

Q(x1, x2, x3, x4) ← R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x4) ∧ U(x4, x1)

U(a4, a1)

⊗

⊕

T(a3, a4)

R(a1, a2)

⊗

S(a2, a3)

U(b4, a1)

⊗

T(a3, b4)

⊗

R(c1, c2)

⊗

U(c4, c1) S(c2, c3)

⊗

T(c3, c4)

⊗

⊕

14

134

1434 34

134

13

12 23

123

13

12 14 23 34

124 234

24

(a1, a2, a3, a4)

The parse tree of each monomial/output corresponds to a tree decomposition 
which can be constructed by extracting the “type” of each -gate⊗

14 34

134

12 23

123

13



Lower Bound: Key Ideas

U(a4, a1)

⊗

⊕

T(a3, a4)

R(a1, a2)

⊗

S(a2, a3)

U(b4, a1)

⊗

T(a3, b4)

⊗

R(c1, c2)

⊗

U(c4, c1) S(c2, c3)

⊗

T(c3, c4)

⊗

⊕

14

134

1434 34

134

13

12 23

123

13

12 14 23 34

124 234

24

14 34

134

12 23

123

13

12 14

124

23 34

234
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• The number of -gates will be bounded by the output of any disjunctive 
Datalog rule that chooses one bag from each decomposition

• Use the worst-case construction for disjunctive rules [Khamis et al. ’16]

⊗

T134(x1, x3, x4) ∨ T234(x2, x3, x4) ← R(x1, x2) ∧ S(x2, x3) ∧ T(x3, x4) ∧ U(x4, x1)



More in the Paper
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1. We show that the same upper & lower bounds hold if we add 
constraints (degree-aware entropic width) 

2. We show how to extend the bounds for circuits with multiple 
outputs (non-Boolean CQs)

3. We show how to prove tight upper & lower bounds for circuits that 
are formulas (inflationary entropic width)

 has semiring circuits of linear size   is acyclicQ ⇔ Q



Open Questions

• What is the upper bound for non-idempotent semirings?
• Can we show lower bounds for Boolean semirings?
• What happens when the query has self-joins? 
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Thank you!


