
Circuits and Formulas for
Datalog over Semirings

Austen Fan Paris Koutris Sudeepa Roy

PODS 2025, Berlin, Germany

A Datalog program consists of

IDBs (intermediate / final relations)
and EDBs (input relations)

// single source reachability

reach(x) :- source(x)

reach(x) :- reach(y), E(y, x)

2

A Datalog program is

• Monadic if every IDB is unary

• Rulewise-acyclic if the body of every rule is acyclic

• Linear if every rule has at most one IDB

• A basic chain program if every rule is a “path rule” -- S(x, y), T(y, z), U(z, w), …

• A basic chain program corresponds naturally to a Context-free Grammar (CFG)

• When the CFG is regular, we get Regular Path Queries (RPQs)

// Transitive Closure (TC)
T(x, y) :- E(x, y)
T(x, z) :- T(x, y), E(y, z)

// basic chain and non-linear
t(x, y) :- a(x, y)
t(x, u) :- t(x, y), a(y, z), b(y, w), t(w, u)

t ← a
t ← tabt

Datalog - Refresher

Boolean Semiring / Set semantics (𝔹, ∨, ∧, ⊥, ⊤)
Tropical Semiring / weighted graphs (ℕ, 𝑚𝑖𝑛, +, ∞, 0)

Bag semantics (ℤ, +, ×, 0, 1)

reachability

shortest paths

counting paths

3

• ⊕, ⊗ : associative, commutative
• 𝟎, 𝟏 neutral elements of ⊕, ⊗
• ⊗ distributes over ⊕
• 𝟎 ⊗ a = 𝟎

▪ Absorptive semiring: a ⊕ (a ⊗ b) = a or, 1 ⊕ a = 1
 implies idempotence of ⊕: a ⊕ a = a

(commutative naturally-ordered) semiring (𝔻, ⊕, ⊗, 𝟎, 𝟏)

Focus of our paper:

// Transitive Closure (TC)
T(x, y) :- E(x, y)
T(x, z) :- T(x, y), E(y, z)

Semirings - Refresher

4

Boolean query Q:

∃ x ∃ y R(x) ∧ S (x, y) ∧ T(y)

x1

x2

z1

z2

y1

y2

y3

Annotated Database D

FQ,D = (x1 ∧ y1 ∧ z1) ∨ (x1 ∧ y2∧ z2) ∨ (x2 ∧ y3∧ z2)

R

Ann

Bob

S

Ann Joe

Ann Tom

Bob Tom

T

Joe

Tom

FQ,D = (x1 ⊗ y1 ⊗ z1) ⊕ (x1 ⊗ y2 ⊗ z2) ⊕ (x2 ⊗ y3 ⊗ z2)

Boolean provenance
= PosBool[X]

General Provenance Semiring

Provenance Semirings, Green-Karvounarakis-Tannen, PODS'07

For UCQ / RA+, FQ,D is poly-size and poly-time computable in |D|

Question:
What about Provenance Semiring for Recursive Datalog

Definition, Computation, Storage

Provenance Semirings - Refresher

Why Study Provenance for
Datalog & Semirings?

• Theory:
– Provenance on PosBool[X] and other semirings for UCQ is well

understood

– Naturally extends to Recursive Datalog

– A fundamental problem theoretically

• Applications:
– Provenance is important for trust, reproducibility

– Provenance allows efficient updates in results with updated inputs
(e.g., deletion or annotation propagation)

– Recursive computation needed over other semirings in industry

– Circuits are used in provenance tracking systems with semirings for
SQL [ProvSQL, SJMR’18]

5
[SJMR’18] ProvSQL: Provenance and Probability Management in PostgreSQL, Senellart-Jachiet-Maniu-Ramusat, PVLDB’18

6

• Semantics using Derivation trees or Proof Trees
• Infinitely many trees with a finite form for PosBool[X]: q

May not be well defined for general semiring:
infinite sum may not converge [ANPSW’22]

(q) ⊕ (p ⊗ q) ⊕ (p ⊗ p ⊗ q) ⊕ …. Still = q for absorptive

▪ keep polynomials that are not “absorbed” by the others – Sorp[X] in [DMRS’14]
 e.g. pq + p2q3 = pq p2q + pq2 = p2q + pq2

[GKT’07] Provenance Semirings, Green-Karvounarakis-Tannen, PODS’07
[DMRS’14] Circuits for Datalog Provenance, Deutch-Milo-Roy-Tannen, ICDT’14
[ANPSW’22] Convergence of Datalog over (Pre-) Semirings, Abo Khamis- Ngo-Pichler-Suciu Wang, PODS’22

T(x, y):- R(x, y)
T(x, y):- R(x, z), T(z, y)

Prior work on provenance for Datalog and Semirings

7

Theorem – Lower Bound [DMRT’14]:
Given a PosBool(X)-database D and a Datalog program P, the provenance of tuples in P(D)
cannot have a “faithful representation” using Boolean formulas of size polynomial in |D|

[DMRT ’14]: Circuits for Datalog Provenance, Deutch-Milo-Roy-Tannen, ICDT'14

[Karchmer-Wigderson, 1988] st-connectivity on n nodes requires Ω(log2n)-
depth monotone circuit = nΩ(logn)-size monotone Boolean formula

Theorem – Upper Bound [DMRT’14]: Datalog on Absorptive Semirings Sorp[X] has a poly-
size circuit computable in polynomial time (also shows its convergence)

Trace naïve evaluation --- but, bounds were not tight

s
t

Exponential DNF
but still poly-size formula for
st-reachability in CNF
(x1y1 + z1w1)… (xnyn+znwn)

x1 y1
x2 y2

x3 y3 xn yn

z1 w1
z2 w2

z3 w3 zn wn

Solution: Use Circuits for Provenance!
Formula → circuit, leaves = EDB facts, internal nodes = ⊕ and ⊗ gates
Size = # gates
Depth = length of longest root → leaf path
Formula ≡ a circuit with fan out 1

Circuits for Datalog Provenance over Semirings

• Observation: It suffices to focus on depth – O(log m) vs. Ω(log1+ε m)

• [Wegener’83]. Let 𝐹 be a formula over the Boolean semiring of size |𝐹 |. Then,
there exists an equivalent formula (circuit) of depth 𝑂 (log |𝐹 |).

• Which Datalog programs admit polynomial-size formulas and which do not?

• Which Datalog programs admit circuits of depth 𝑂(log 𝑚), and which require
circuits of super-logarithmic depth?

• Is Transitive Closure (TC) a canonical case for upper and lower bounds?

8[Wegener’83] Relating Monotone Formula Size and Monotone Depth of Boolean Functions. Ingo Wegener, Inf. Process. Lett.,’83
[DMRT ’14]: Circuits for Datalog Provenance, Deutch-Milo-Roy-Tannen, ICDT'14

m = input size, n = domain size
Circuit size = #gates, Fan-in = 2

We only focus on Absorptive semirings
• Poly-size circuits always possible for any datalog program on absorptive semirings [DMRT’14]
• But, poly-size circuits possible for some more general semirings [DMRT’14]

All questions are open for general semirings

This paper: Partial understanding of these questions
This talk: Overview and ideas of some of the results and ideas

Questions

Basic Chain Datalog

• 𝑃(𝑥,𝑦) :- 𝑄0(𝑥,𝑧1) ∧ 𝑄1(𝑧1,𝑧2) ∧ . . . ∧ 𝑄𝑘 (𝑧𝑘,𝑦)

• Corresponds to a CFG

• If all rules are left (or right)-linear, then a regular language (RL)

9

Basic Chain Datalog: Transitive Closure

• Idea (1): Simulate Bellman-Ford for absorptive semirings
– convert to fan-in 2 with O(log n) ⊕-gates

• Idea (2): By repeated matrix multiplication
– Mij = E(i, j) if an edge exists, = 1 for i = j, else = 0
– Mp computes walks of length ⩽ p

– 𝑀𝑖𝑗
𝑝+1

 = σ𝑘=1
𝑛 𝑀𝑖𝑘

𝑝
𝑀𝑘𝑗

𝑝

– Two n x n matrix multiplication by O(n3) many ⊗-gates and O(n2 log n) many ⊕-gates
– Compute Mn by log n times doubling matrix multiplication
– Absorption matters – (i,i) stays 1 and cycles are absorbed
– Better bound for dense graphs and parallelization

10

Theorems: Transitive closure on any absorptive semirings
 (1) O(mn)-size and O(n log n)-depth circuits
 (2) O(n3 log n)-size and O(log2 n)-depth circuits

Size and depth-preserving circuit reductions:

• Reduction from TC to Π

• Reduction from Π to TC

11

Theorem:
Let Π be a basic chain Datalog program that corresponds to an
infinite regular language 𝐿.
Then, the provenance polynomial for Π has the same circuit
depth and size complexity as TC over any absorptive semiring S.

Basic Chain Datalog:
Infinite Regular Languages ≡ TC

Question: Is Transitive Closure (TC) a canonical case for upper and lower bounds of
circuit size and depth?

1. Reduction from TC to Π (infinite RL L)
Pumping Lemma for RL:

RL L infinite ⇒ there exists an integer 𝑝 ≥ 1 such that every string of length at
least 𝑝 can be written as 𝑥𝑦𝑧 such that:

(1) |𝑦| ≥ 1; (2) |𝑥𝑦| ≤ 𝑝; (3) (∀𝑛 ≥ 0). (𝑥𝑦𝑛𝑧) is accepted by L

12

s tu v

s tu vs0 s1 s|x|-1 t1 t2 t|z|u1 u|y|-1

• Take a circuit C of Π → construct circuit C’ for TC
– Use C as C’
– have all but one input to connect to 1
– Fan out > 1, Circuit reduction not a formula

reduction

• Circuit C and C’ have the ~same depth and size

x1

x = x1 x2 … x |X|

y = y1 y2 … y |Y|

z = z1 z2 … z |Z|

x|X| y1
y|Y| z1 z|Z|z2

C
(TC)

C’
(L)

x1 x2 x|x| x1 x2 x|x|

x 1

TC:

Π:

Encode T(s, t), D for TC to T’(s0, t|z|), D’ for Π

2. Reduction from Π (infinite RL L) to TC

• DFA A for L
• TC on D with E(u, v)

• Product graph G’ of D and A
– nodes (v, s), u is a “vertex” in D, s is a state in A
– Edges E’((u, s1), (v, s2)) : E(u, v) and A(s1, s2)
– O(m) edges and O(n) vertices

• Take a circuit C’ of TC → construct circuit C for Π
• Run TC on G’ K times for each accepting state t and build

K circuits copying C’
• L(u, v) → TC((u, s0), (v, t)), s0 start state of A
• Union over accepting states = Take ⊕ over K circuits
• If input to C’ is ((u, s1), (v, s2)) then input to C is (u, v)

• Preserves size and depth --- both circuit and formula
reduction

13

u v s1 s2

TC edges in D DFA edges in A

(u, s1) (v, s2)

C’
(TC)

C
(L)

((u, s1), (v, s2)) (u, v)

14

Some tight bounds
Some gaps

m = input size
n = active domain size

(prior work, [DMRT’14])

Basic Chain Programs: Overview

If Π satisfies the polynomial fringe property (tight proof trees without repeated

IDBs on a root to leaf path), then can construct circuits of poly-size and

O(log2 m)-depth over absorptive S
15

Some other results and observations

𝑇 (𝑥,𝑦) :- 𝐸(𝑥,𝑦), 𝑇(𝑥,𝑦) :-𝐴(𝑥) ∧𝑇(𝑧,𝑦)
Bounded for absorptive semirings

To show lower bounds, PosBool[X] suffices for positive semirings S
• Positive semirings: a ⊕ b = 0 => a = 0 and b = 0
• Semiring homomorphism from S to B

Upper bounds: boundedness suffices for O(log m)-depth circuits = poly-size formula
• Bounded = Naïve evaluation converges after ⩽ constant k steps
• Build circuits by “grounding” rules, use O(log m) depth for ⊕
• Undecidable – we give conditions for special cases when bounded and = UCQ

Basic chain datalogs / CFG are bounded and O(log m)-depth if and only if finite
(positive absorptive S)

16

• Can we show a (clean) dichotomy for which Datalog programs admit a
polynomial-size formula for absorptive semirings?

• Is every unbounded Datalog program “as hard as” reachability?

• Is there any absorptive semiring for which boundedness differs from
boundedness on the Boolean semiring?

• Building compact provenance semiring circuits efficiently for Datalog
is an important problem with both theoretical and practical significance

• Our work only gives partial answers

• Too many theorems for different cases on programs, semirings, … 

• What can we do for semirings beyond absorptive semirings including p-
stable semrings?

Conclusions and Open Questions

Thank you

17
Thanks to Simons Institute, Berkeley for hosting the Fall 2023 program on
Database Theory where the research started.

	Slide 1: Circuits and Formulas for Datalog over Semirings
	Slide 2: Datalog - Refresher
	Slide 3: Semirings - Refresher
	Slide 4: Provenance Semirings - Refresher
	Slide 5: Why Study Provenance for Datalog & Semirings?
	Slide 6: Prior work on provenance for Datalog and Semirings
	Slide 7: Circuits for Datalog Provenance over Semirings
	Slide 8: Questions
	Slide 9: Basic Chain Datalog
	Slide 10: Basic Chain Datalog: Transitive Closure
	Slide 11: Basic Chain Datalog: Infinite Regular Languages ≡ TC
	Slide 12: 1. Reduction from TC to Π (infinite RL L)
	Slide 13: 2. Reduction from Π (infinite RL L) to TC
	Slide 14: Basic Chain Programs: Overview
	Slide 15
	Slide 16
	Slide 17: Thank you

