Circuits and Formulas for Datalog over Semirings

Austen Fan

Paris Koutris

Sudeepa Roy

PODS 2025, Berlin, Germany

Datalog - Refresher

A Datalog program consists of

IDBs (intermediate / final relations) and EDBs (input relations)

```
// Transitive Closure (TC)
T(x, y) :- E(x, y)
T(x, z) :- T(x, y), E(y, z)
```

```
// single source reachability
reach(x) :- source(x)
reach(x) :- reach(y), E(y, x)
```

 $t \leftarrow a$

t ← tabt

A Datalog program is

- <u>Monadic</u> if every IDB is unary
- <u>Rulewise-acyclic</u> if the body of every rule is acyclic
- Linear if every rule has at most one IDB
- <u>A basic chain program</u> if every rule is a "path rule" -- S(x, y), T(y, z), U(z, w), ...
- A basic chain program corresponds naturally to a Context-free Grammar (CFG)
- When the CFG is regular, we get **Regular Path Queries (RPQs)**

```
// basic chain and non-linear
t(x, y) :- a(x, y)
t(x, u) :- t(x, y), a(y, z), b(y, w), t(w, u)
```

2

Semirings - Refresher

(commutative naturally-ordered) semiring $(\mathbb{D}, \oplus, \otimes, 0, 1)$

<pre>// Transitive Closure (TC)</pre>	
T(x, y) := E(x, y)	
T(x, z) := T(x, y), E(y, z)	

- \oplus , \otimes : associative, commutative
- 0, 1 neutral elements of \oplus , \otimes
- \otimes distributes over \oplus
- 0 🛞 a = 0
- Boolean Semiring / Set semantics $(\mathbb{B}, \vee, \wedge, \bot, \top)$ ------reachabilityTropical Semiring / weighted graphs $(\mathbb{N}, min, +, \infty, 0)$ ------shortest pathsBag semantics $(\mathbb{Z}, +, \times, 0, 1)$ ------counting paths

Focus of our paper:

Absorptive semiring: a ⊕ (a ⊗ b) = a or, 1 ⊕ a = 1 implies idempotence of ⊕: a ⊕ a = a

Provenance Semirings - Refresher

 $F_{Q,D} = (x_1 \land y_1 \land z_1) \lor (x_1 \land y_2 \land z_2) \lor (x_2 \land y_3 \land z_2)$ Boolean provenance = PosBool[X]

 $F_{Q,D} = (x_1 \otimes y_1 \otimes z_1) \oplus (x_1 \otimes y_2 \otimes z_2) \oplus (x_2 \otimes y_3 \otimes z_2)$ General Provenance Semiring

For UCQ / RA⁺, $F_{Q,D}$ is poly-size and poly-time computable in |D|

Question:

What about Provenance Semiring for Recursive Datalog Definition, Computation, Storage

Why Study Provenance for Datalog & Semirings?

• Theory:

- Provenance on PosBool[X] and other semirings for UCQ is well understood
- Naturally extends to Recursive Datalog
- A fundamental problem theoretically
- Applications:
 - Provenance is important for trust, reproducibility
 - Provenance allows efficient updates in results with updated inputs (e.g., deletion or annotation propagation)
 - Recursive computation needed over other semirings in industry
 - Circuits are used in provenance tracking systems with semirings for SQL [ProvSQL, SJMR'18]

Prior work on provenance for Datalog and Semirings

- keep polynomials that are not "absorbed" by the others Sorp[X] in [DMRS'14]
 - e.g. $pq + p^2q^3 = pq$ $p^2q + pq^2 = p^2q + pq^2$

[GKT'07] Provenance Semirings, Green-Karvounarakis-Tannen, PODS'07 [DMRS'14] Circuits for Datalog Provenance, Deutch-Milo-Roy-Tannen, ICDT'14 6 [ANPSW'22] Convergence of Datalog over (Pre-) Semirings, Abo Khamis- Ngo-Pichler-Suciu Wang, PODS'22

Circuits for Datalog Provenance over Semirings

Exponential DNF but still poly-size formula for st-reachability in CNF $(x_1y_1 + z_1w_1)...(x_ny_n+z_nw_n)$

Theorem – Lower Bound [DMRT'14]:

Given a PosBool(X)-database D and a Datalog program P, the provenance of tuples in P(D) cannot have a "faithful representation" using Boolean formulas of size polynomial in |D|

[Karchmer-Wigderson, 1988] st-connectivity on n nodes requires $\Omega(\log^2 n)$ depth monotone circuit = $n^{\Omega(\log n)}$ -size monotone Boolean formula

Solution: Use Circuits for Provenance! Formula \rightarrow circuit, leaves = EDB facts, internal nodes = \bigoplus and \bigotimes gates Size = # gates Depth = length of longest root \rightarrow leaf path Formula \equiv a circuit with fan out 1

Theorem – Upper Bound [DMRT'14]: Datalog on Absorptive Semirings Sorp[X] has a polysize circuit computable in polynomial time (also shows its convergence)

Trace naïve evaluation --- but, bounds were not tight

Questions

- Observation: It suffices to focus on depth O(log m) vs. $\Omega(\log^{1+\varepsilon} m)$
- [Wegener'83]. Let F be a formula over the Boolean semiring of size |F|. Then, there exists an equivalent formula (circuit) of depth O (log |F|).
- Which Datalog programs admit <u>polynomial-size formulas</u> and which do not?
- Which Datalog programs admit <u>circuits</u> of depth O(log m), and which require circuits of super-logarithmic depth?
- Is Transitive Closure (TC) a canonical case for upper and lower bounds?

We only focus on Absorptive semirings

- Poly-size circuits always possible for any datalog program on absorptive semirings [DMRT'14]
- But, poly-size circuits possible for some more general semirings [DMRT'14]

All questions are open for general semirings

This paper: Partial understanding of these questions This talk: Overview and ideas of some of the results and ideas

[Wegener'83] Relating Monotone Formula Size and Monotone Depth of Boolean Functions. Ingo Wegener, Inf. Process. Lett.,'83 [DMRT '14]: Circuits for Datalog Provenance, Deutch-Milo-Roy-Tannen, ICDT'14

Basic Chain Datalog

- $P(x,y) := Q_0(x,z_1) \wedge Q_1(z_1,z_2) \wedge \ldots \wedge Q_k(z_k,y)$
- Corresponds to a CFG
- If all rules are left (or right)-linear, then a regular language (RL)

Basic Chain Datalog: Transitive Closure

Theorems: Transitive closure on <u>any absorptive semirings</u> (1) O(mn)-size and O(n log n)-depth circuits (2) O(n³ log n)-size and O(log² n)-depth circuits

- Idea (1): Simulate Bellman-Ford for absorptive semirings
 - − convert to fan-in 2 with $O(\log n) \oplus$ -gates
- Idea (2): By repeated matrix multiplication
 - M_{ij} = E(i, j) if an edge exists, = 1 for i = j, else = o
 - M^p computes walks of length $\leq p$
 - $M_{ij}^{p+1} = \sum_{k=1}^{n} M_{ik}^{p} M_{kj}^{p}$
 - Two n x n matrix multiplication by O(n³) many \otimes -gates and O(n² log n) many \oplus -gates
 - Compute Mⁿ by log n times doubling matrix multiplication
 - Absorption matters (i,i) stays 1 and cycles are absorbed
 - Better bound for dense graphs and parallelization

Basic Chain Datalog: Infinite Regular Languages \equiv TC

Question: Is Transitive Closure (TC) a canonical case for upper and lower bounds of circuit size and depth?

Theorem:

Let Π be a basic chain Datalog program that corresponds to an <u>infinite regular language L</u>.

Then, the provenance polynomial for Π has the <u>same circuit</u> <u>depth and size complexity as TC</u> over any absorptive semiring S.

Size and depth-preserving circuit reductions:

- Reduction from TC to Π
- Reduction from П to TC

Reduction from TC to Π (infinite RL L)

Pumping Lemma for RL:

RL L infinite \Rightarrow there exists an integer $p \ge 1$ such that every string of length at least p can be written as xyz such that:

(1) $|y| \ge 1$; (2) $|xy| \le p$; (3) $(\forall n \ge 0)$. $(xy^n z)$ is accepted by L

- Take a circuit C of $\Pi \rightarrow$ construct circuit C' for TC
 - Use C as C'
 - have all but one input to connect to 1
 - Fan out > 1, Circuit reduction not a formula reduction
- Circuit C and C' have the ~same depth and size

2. Reduction from Π (infinite RL L) to TC

- DFA A for L
- TC on D with E(u, v)
- Product graph G' of D and A
 - nodes (v, s), u is a "vertex" in D, s is a state in A
 - Edges $E'((v, s_1), (v, s_2)) : E(v, v)$ and $A(s_1, s_2)$
 - O(m) edges and O(n) vertices
- Take a circuit C' of TC \rightarrow construct circuit C for Π
- Run TC on G' K times for each accepting state t and build K circuits copying C'
- $L(u, v) \rightarrow TC((u, s_0), (v, t)), s_0 \text{ start state of } A$
- Union over accepting states = Take \bigoplus over K circuits
- If input to C' is $((v, s_1), (v, s_2))$ then input to C is (v, v)
- Preserves size and depth --- both circuit and formula reduction

Basic Chain Programs: Overview

	CFG Language	Circuit Size		G Language Circuit Size		Circuit	t Depth
-		Upper Bound	Lower Bound	Upper Bound	Lower Bound		
	finite	<i>O(m)</i>	$\Omega(m)$	$O(\log n)$	$\Omega(\log n)$		
-	infinite	O(mn)	O(m)	$O(n \log n)$	$O(\log^2 n)$		
	regular	$O(n^3\log n)$	S2(<i>m</i>)	$O(\log^2 n)$	$s_2(\log n)$		
	infinite	$O(n^5)$	$\Omega(m)$	$O(n^2\log n)$	$\Omega(\log^2 n)$		

(prior work, [DMRT'14])

m = input size n = active domain size

Some tight bounds Some gaps

Some other results and observations

To show lower bounds, PosBool[X] suffices for positive semirings S

- Positive semirings: $a \bigoplus b = o => a = o and b = o$
- Semiring homomorphism from S to B

Upper bounds: boundedness suffices for O(log m)-depth circuits = poly-size formula

- Bounded = Naïve evaluation converges after ≤ constant k steps
- Build circuits by "grounding" rules, use O(log m) depth for \oplus
- Undecidable we give conditions for special cases when bounded and = UCQ

T(x,y) := E(x,y), $T(x,y) := A(x) \wedge T(z,y)$ Bounded for absorptive semirings

Basic chain datalogs / CFG are bounded and O(log m)-depth if and only if finite (positive absorptive S)

If Π <u>satisfies the polynomial fringe property</u> (tight proof trees without repeated IDBs on a root to leaf path), then can construct circuits of poly-size and O(log² m)-depth over absorptive S

Conclusions and Open Questions

- Building compact provenance semiring circuits efficiently for Datalog is an important problem with both theoretical and practical significance
- Our work only gives partial answers
- Too many theorems for different cases on programs, semirings, ... 🟵
 - Can we show a (clean) dichotomy for which Datalog programs admit a polynomial-size formula for absorptive semirings?
 - Is every unbounded Datalog program "as hard as" reachability?
 - Is there any absorptive semiring for which boundedness differs from boundedness on the Boolean semiring?
 - What can we do for semirings beyond absorptive semirings including pstable semrings?

Thank you

Thanks to Simons Institute, Berkeley for hosting the Fall 2023 program on Database Theory where the research started.