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INTRODUCTION
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Join query evaluation is one of the most important operation performed by DBMS (both graph 
and relational)

Staggering number of join algorithms and variants have been developed over the last 50 years

Lots of practical optimizations (such as bloom filters, predicate transfer, etc.) have been 
integrated into evaluation engines to speed up evaluation

Question: What is the optimal time complexity of join query evaluation?



INTRODUCTION
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Parameters for expressing evaluation time complexity
• Database D
• Join query Q
• Output size |OUT| = |Q(D)|

Time complexity of evaluating Q(D) = O(|D| + g(|D|x ,|OUT|y)+ |OUT|)

WHAT IS THE FUNCTION G(.,.) AND WHAT IS THE 
VALUE OF EXPONENTS X AND Y?



PRELIMINARIES
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A join query is of the form
Q(x1,x2,…,xk) = R1(y1)  R2(y2)  …  Rn(yn)

Consider the 3-path query: Q(x1,x4) = R1(x1,x2)  R2(x2, x3)  R3(x3, x4)

- Acyclic queries can be visualized via a join tree
- Each node in the tree corresponds to a relation
- variables in the tree form a connected structure

⋈ ⋈ ⋈

⋈ ⋈ R1(x1,x2)

R2(x2,x3)

R3(x3,x4)



YANNAKAKIS ALGORITHM 
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Theorem 1 [VLDB 1981]. Given any acyclic CQ Q and a database D, Q(D) can be evaluated in 
time O(|D| + |D| |OUT| + |OUT|).

Properties: 
1. Yannakakis algorithm gives the running time guarantee for any join tree!
2. The algorithm is output-sensitive

∙

OUR MAIN IDEA: CLEVERLY PARTITION THE 
INPUT DATA AND USE DIFFERENT JOIN TREES 
FOR DIFFERENT PARTITIONS



OUR CONTRIBUTION

We present a novel algorithm that improves upon the Yannakakis algorithm. In particular, we show that 
it is possible to evaluate an acyclic query Q on database D in time                                   where f(Q) > 1

This is the first improvement of the Yannakakis algorithm in over 40 years using combinatorial 
algorithms
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We show that subject to popular conjectures, our algorithm is optimal for a large class of 
queries



YANNAKAKIS ALGORITHM
Step 1. Pick any join tree and remove all “dangling tuples”
Step 2. Process nodes in bottom-up fashion

Step 2.1 Join relation with all relations in its subtree
Step 2.2 Project on the output variables in the subtree and the join variables

R1(x1,x2)

R2(x2,x3)

R3(x3,x4)

R1(x1,x2)

R23(x2,x4)

R123(x1,x2,x4)
R2 ⋈ R3 R1 ⋈ R23



KEY IDEAS

Q(x1,x4) = R1(x1,x2)  R2(x2, x3)  R3(x3, x4)⋈ ⋈

… … … …

x1 x2 x3 x4

≥ ∆ ?≤ 𝑂𝑈𝑇 / ∆

R1(x1,x2) R2(x2, x3) R3(x3, x4)



KEY IDEAS
Pick a relation that contains an output variable (say R1(x1,x2))

Filter rows of R1(x1,x2): create relation RH
1(x1,x2) where deg(x2, R1) >  (aka the heavy part)

QH(x1,x4) = RH
1(x1,x2)  R2(x2, x3)  R3(x3, x4)

Δ

⋈ ⋈

O(|D||OUT/
)Δ

RH
1(x1,x2

)

R2(x2,x3)

R3(x3,x4)

R24(x2,x4)

O(|D||OUT/
)Δ

x
1

x
2

… … … …

x3 x4

R2(x2, x3) R3(x3, x4)RH
1(x1,x2)



KEY IDEAS
Next, we process the light part RL

1(x1,x2) = R1 \ RH
1(x1,x2)

QL(x1,x4) = RL
1(x1,x2)  R2(x2, x3)  R3(x3, x4)⋈ ⋈

RL
1(x1,x2)

R2(x2,x3)

R3(x3,x4)

R12(x1,x3)

R3(x3,x4)

𝐷 . ∆

𝐷

Repeat the same idea on 
the new query!

RL1 ⋈ R2



FINAL ALGORITHM
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In each iteration, we reduce the number nodes in the join tree by one.

For iteration i,
• Processing of the heavy partition requires O(|D||OUT|/ )
• Processing of the light partition requires O(|D| )

Assuming k relations in the query, the running time is minimized when

|D||OUT|/  = |D|

Plugging in the optimal value of                       , 

Total running time = O(                      )

Δ
Δ𝑖

Δ



EXTENSIONS
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Our framework can also be extended to queries involving GROUP BY queries and 
aggregations

For queries that are cyclic, we can apply our results by first converting the cyclic query 
into acyclic schema using the standard idea of “tree decompositions”



LOWER BOUNDS
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Boolean k-clique conjecture: There is no real 𝜖 > 0 such that computing the k-clique problem (with k ≥ 3) 
over the Boolean semiring in an (undirected) n-node graph requires time              using a combinatorial 
algorithm

Theorem: There exists a query Q with l output variables such that no combinatorial algorithm can 
compute Q(D) in time                                subject to the Boolean k-clique conjecture for any real 𝜖 > 0



CONCLUSION AND FUTURE WORK
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• In this talk, we present a novel algorithm that improves upon the 
Yannakakis algorithm.

• Future Work 1: Practical implementation of our work!

• The algorithm is a join-project plan and thus, can be readily implemented via 
SQL queries

• Future Work 2: Discover more cool algorithms!

• Can the ideas be extended to other join queries (such as band joins)?
• Algorithms that consider other parameters such as minimizing number of 

semijoins


