
OUTPUT-SENSITIVE
CONJUNCTIVE
QUERY EVALUATION
Shaleen Deep1, Hangdong Zhao2, Austen Z. Fan2, Paris
Koutris2

1Microsoft GSL, 2University of Wisconsin-Madison

INTRODUCTION

2

Join query evaluation is one of the most important operation performed by DBMS (both graph
and relational)

Staggering number of join algorithms and variants have been developed over the last 50 years

Lots of practical optimizations (such as bloom filters, predicate transfer, etc.) have been
integrated into evaluation engines to speed up evaluation

Question: What is the optimal time complexity of join query evaluation?

INTRODUCTION

3

Parameters for expressing evaluation time complexity
• Database D
• Join query Q
• Output size |OUT| = |Q(D)|

Time complexity of evaluating Q(D) = O(|D| + g(|D|x ,|OUT|y)+ |OUT|)

WHAT IS THE FUNCTION G(.,.) AND WHAT IS THE
VALUE OF EXPONENTS X AND Y?

PRELIMINARIES

4

A join query is of the form
Q(x1,x2,…,xk) = R1(y1) R2(y2) … Rn(yn)

Consider the 3-path query: Q(x1,x4) = R1(x1,x2) R2(x2, x3) R3(x3, x4)

- Acyclic queries can be visualized via a join tree
- Each node in the tree corresponds to a relation
- variables in the tree form a connected structure

⋈ ⋈ ⋈

⋈ ⋈ R1(x1,x2)

R2(x2,x3)

R3(x3,x4)

YANNAKAKIS ALGORITHM

5

Theorem 1 [VLDB 1981]. Given any acyclic CQ Q and a database D, Q(D) can be evaluated in
time O(|D| + |D| |OUT| + |OUT|).

Properties:
1. Yannakakis algorithm gives the running time guarantee for any join tree!
2. The algorithm is output-sensitive

∙

OUR MAIN IDEA: CLEVERLY PARTITION THE
INPUT DATA AND USE DIFFERENT JOIN TREES
FOR DIFFERENT PARTITIONS

OUR CONTRIBUTION

We present a novel algorithm that improves upon the Yannakakis algorithm. In particular, we show that
it is possible to evaluate an acyclic query Q on database D in time where f(Q) > 1

This is the first improvement of the Yannakakis algorithm in over 40 years using combinatorial
algorithms

6

We show that subject to popular conjectures, our algorithm is optimal for a large class of
queries

YANNAKAKIS ALGORITHM
Step 1. Pick any join tree and remove all “dangling tuples”
Step 2. Process nodes in bottom-up fashion

Step 2.1 Join relation with all relations in its subtree
Step 2.2 Project on the output variables in the subtree and the join variables

R1(x1,x2)

R2(x2,x3)

R3(x3,x4)

R1(x1,x2)

R23(x2,x4)

R123(x1,x2,x4)
R2 ⋈ R3 R1 ⋈ R23

KEY IDEAS

Q(x1,x4) = R1(x1,x2) R2(x2, x3) R3(x3, x4)⋈ ⋈

… … … …

x1 x2 x3 x4

≥ ∆ ?≤ 𝑂𝑈𝑇 / ∆

R1(x1,x2) R2(x2, x3) R3(x3, x4)

KEY IDEAS
Pick a relation that contains an output variable (say R1(x1,x2))

Filter rows of R1(x1,x2): create relation RH
1(x1,x2) where deg(x2, R1) > (aka the heavy part)

QH(x1,x4) = RH
1(x1,x2) R2(x2, x3) R3(x3, x4)

Δ

⋈ ⋈

O(|D||OUT/
)Δ

RH
1(x1,x2

)

R2(x2,x3)

R3(x3,x4)

R24(x2,x4)

O(|D||OUT/
)Δ

x
1

x
2

… … … …

x3 x4

R2(x2, x3) R3(x3, x4)RH
1(x1,x2)

KEY IDEAS
Next, we process the light part RL

1(x1,x2) = R1 \ RH
1(x1,x2)

QL(x1,x4) = RL
1(x1,x2) R2(x2, x3) R3(x3, x4)⋈ ⋈

RL
1(x1,x2)

R2(x2,x3)

R3(x3,x4)

R12(x1,x3)

R3(x3,x4)

𝐷 . ∆

𝐷

Repeat the same idea on
the new query!

RL1 ⋈ R2

FINAL ALGORITHM

11

In each iteration, we reduce the number nodes in the join tree by one.

For iteration i,
• Processing of the heavy partition requires O(|D||OUT|/)
• Processing of the light partition requires O(|D|)

Assuming k relations in the query, the running time is minimized when

|D||OUT|/ = |D|

Plugging in the optimal value of ,

Total running time = O()

Δ
Δ𝑖

Δ

EXTENSIONS

12

Our framework can also be extended to queries involving GROUP BY queries and
aggregations

For queries that are cyclic, we can apply our results by first converting the cyclic query
into acyclic schema using the standard idea of “tree decompositions”

LOWER BOUNDS

13

Boolean k-clique conjecture: There is no real 𝜖 > 0 such that computing the k-clique problem (with k ≥ 3)
over the Boolean semiring in an (undirected) n-node graph requires time using a combinatorial
algorithm

Theorem: There exists a query Q with l output variables such that no combinatorial algorithm can
compute Q(D) in time subject to the Boolean k-clique conjecture for any real 𝜖 > 0

CONCLUSION AND FUTURE WORK

14

• In this talk, we present a novel algorithm that improves upon the
Yannakakis algorithm.

• Future Work 1: Practical implementation of our work!

• The algorithm is a join-project plan and thus, can be readily implemented via
SQL queries

• Future Work 2: Discover more cool algorithms!

• Can the ideas be extended to other join queries (such as band joins)?
• Algorithms that consider other parameters such as minimizing number of

semijoins

