Lower Bounds for Sum-Product Queries

Austen Z. Fan

University of Wisconsin, Madison

Preliminary Exam

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

- 1. Constraint Satisfaction Problem (CSP)
- 2. Query Evaluation in Relational Databases

- 1. Constraint Satisfaction Problem (CSP)
- 2. Query Evaluation in Relational Databases
- 3. Inference in Bayesian Networks and Probabilistic Graphical Model

- 1. Constraint Satisfaction Problem (CSP)
- 2. Query Evaluation in Relational Databases
- 3. Inference in Bayesian Networks and Probabilistic Graphical Model
- 4. Chain Matrix Multiplication

- 1. Constraint Satisfaction Problem (CSP)
- 2. Query Evaluation in Relational Databases
- 3. Inference in Bayesian Networks and Probabilistic Graphical Model
- 4. Chain Matrix Multiplication
- 5. . . .

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations

Two ways to study Sum-Product Queries in theoretical literature:

Fixing the relations → Dichotomy Theorems
 Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

- Fixing the relations → Dichotomy Theorems
 Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]
- 2. Fixing the induced hypergraph

- Fixing the relations → Dichotomy Theorems
 Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]
- 2. Fixing the induced hypergraph \rightarrow Class of queries

- 1. Fixing the relations \rightarrow Dichotomy Theorems Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]
- Fixing the induced hypergraph → Class of queries
 Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

What is the exact lower bound for a given Sum-Product Query?

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

We partially answer the above question:

We partially answer the above question:

1. Conditional lower bound via fine-grained complexity

We partially answer the above question:

- 1. Conditional lower bound via fine-grained complexity
- 2. Unconditional lower bound via monotone circuits

Outline

Preliminaries

Conditional Lower Bound

Unconditional Lower Bound

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

Preliminaries

Conjunctive Queries

Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A Conjunctive Query Q is an expression associated to a hypergraph $\mathcal{H} = ([n], \mathcal{E})$ where $[n] = \{1, \ldots, n\}$ and some $U \subseteq [n]$:

$$Q(\mathbf{x}_U) \leftarrow \bigwedge_{e \in \mathcal{E}} R_e(\mathbf{x}_e)$$

where each R_e is a relation of arity |e|, the variables x_1, x_2, \ldots, x_n take values in some discrete domain, and $\mathbf{x}_e := (x_i)_{i \in e}$.

A Conjunctive Query Q is an expression associated to a hypergraph $\mathcal{H} = ([n], \mathcal{E})$ where $[n] = \{1, \ldots, n\}$ and some $U \subseteq [n]$:

$$Q(\mathbf{x}_U) \leftarrow \bigwedge_{e \in \mathcal{E}} R_e(\mathbf{x}_e)$$

where each R_e is a relation of arity |e|, the variables x_1, x_2, \ldots, x_n take values in some discrete domain, and $\mathbf{x}_e := (x_i)_{i \in e}$.

It is called *Boolean* if $U = \emptyset$ and *full* if U = [n].

A Conjunctive Query Q is an expression associated to a hypergraph $\mathcal{H} = ([n], \mathcal{E})$ where $[n] = \{1, \ldots, n\}$ and some $U \subseteq [n]$:

$$Q(\mathbf{x}_U) \leftarrow \bigwedge_{e \in \mathcal{E}} R_e(\mathbf{x}_e)$$

where each R_e is a relation of arity |e|, the variables x_1, x_2, \ldots, x_n take values in some discrete domain, and $\mathbf{x}_e := (x_i)_{i \in e}$.

It is called *Boolean* if $U = \emptyset$ and *full* if U = [n].

Example

A Conjunctive Query Q is an expression associated to a hypergraph $\mathcal{H} = ([n], \mathcal{E})$ where $[n] = \{1, \ldots, n\}$ and some $U \subseteq [n]$:

$$Q(\mathbf{x}_U) \leftarrow \bigwedge_{e \in \mathcal{E}} R_e(\mathbf{x}_e)$$

where each R_e is a relation of arity |e|, the variables x_1, x_2, \ldots, x_n take values in some discrete domain, and $\mathbf{x}_e := (x_i)_{i \in e}$.

It is called *Boolean* if $U = \emptyset$ and *full* if U = [n].

Example

Deciding a (colored) 4-cycle

A Conjunctive Query Q is an expression associated to a hypergraph $\mathcal{H} = ([n], \mathcal{E})$ where $[n] = \{1, \ldots, n\}$ and some $U \subseteq [n]$:

$$Q(\mathbf{x}_U) \leftarrow \bigwedge_{e \in \mathcal{E}} R_e(\mathbf{x}_e)$$

where each R_e is a relation of arity |e|, the variables x_1, x_2, \ldots, x_n take values in some discrete domain, and $\mathbf{x}_e := (x_i)_{i \in e}$.

It is called *Boolean* if $U = \emptyset$ and *full* if U = [n].

Example

Deciding a (colored) 4-cycle

$$Q() \leftarrow R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

イロト 不同 トイヨト イヨト 二日

6/37

A Conjunctive Query Q is an expression associated to a hypergraph $\mathcal{H} = ([n], \mathcal{E})$ where $[n] = \{1, \ldots, n\}$ and some $U \subseteq [n]$:

$$Q(\mathbf{x}_U) \leftarrow \bigwedge_{e \in \mathcal{E}} R_e(\mathbf{x}_e)$$

where each R_e is a relation of arity |e|, the variables x_1, x_2, \ldots, x_n take values in some discrete domain, and $\mathbf{x}_e := (x_i)_{i \in e}$.

It is called *Boolean* if $U = \emptyset$ and *full* if U = [n].

Example

Deciding a (colored) 4-cycle

$$Q() \leftarrow R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

Listing (colored) 4-cycles

A Conjunctive Query Q is an expression associated to a hypergraph $\mathcal{H} = ([n], \mathcal{E})$ where $[n] = \{1, \ldots, n\}$ and some $U \subseteq [n]$:

$$Q(\mathbf{x}_U) \leftarrow \bigwedge_{e \in \mathcal{E}} R_e(\mathbf{x}_e)$$

where each R_e is a relation of arity |e|, the variables x_1, x_2, \ldots, x_n take values in some discrete domain, and $\mathbf{x}_e := (x_i)_{i \in e}$.

It is called *Boolean* if $U = \emptyset$ and *full* if U = [n].

Example

Deciding a (colored) 4-cycle

$$Q() \leftarrow R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

Listing (colored) 4-cycles

$$Q(x_1, x_2, x_3, x_4) \leftarrow R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

イロト 不同 トイヨト イヨト 二日

<ロ><一><一><一><一><一><一><一</th>< <</th>><</th>><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><th

For every (Boolean) CQ Q, we associate a hypergraph H to it, where the vertices are variables and the hyperedges are atoms.

For every (Boolean) CQ Q, we associate a hypergraph \mathcal{H} to it, where the vertices are variables and the hyperedges are atoms.

Example

For every (Boolean) CQ Q, we associate a hypergraph \mathcal{H} to it, where the vertices are variables and the hyperedges are atoms.

Example

 $Q(): -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$

For every (Boolean) CQ Q, we associate a hypergraph \mathcal{H} to it, where the vertices are variables and the hyperedges are atoms.

Example

 $Q(): -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$

For every (Boolean) CQ Q, we associate a hypergraph \mathcal{H} to it, where the vertices are variables and the hyperedges are atoms.

Example

 $Q(): -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$

Remark

For every (Boolean) CQ Q, we associate a hypergraph \mathcal{H} to it, where the vertices are variables and the hyperedges are atoms.

Example

 $Q(): -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$

Remark

We are implicitly considering CQ without self-join. We will come back to this point for further work.

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree
< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≧ > ○ Q (~ 8/37

A constraint satisfaction problem consists of (V, D, C), where each constraint is a relation on a subset of the variables.

A constraint satisfaction problem consists of (V, D, C), where each constraint is a relation on a subset of the variables.

A constraint satisfaction problem consists of (V, D, C), where each constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

A constraint satisfaction problem consists of (V, D, C), where each constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

A constraint satisfaction problem consists of (V, D, C), where each constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of database relations.

A constraint satisfaction problem consists of (V, D, C), where each constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of database relations.

Remark

Fixing relations (NP) v.s. fixing hypergraphs (P).

<ロト < 団ト < 臣ト < 臣ト < 臣ト 王 のへで 9/37

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

1. $(\mathbf{D},\oplus,\mathbf{0})$ and $(\mathbf{D},\otimes,\mathbf{1})$ are commutative monoids,

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

- 1. $(\textbf{D},\oplus,\textbf{0})$ and $(\textbf{D},\otimes,\textbf{1})$ are commutative monoids,
- 2. \otimes is distributive over \oplus ,

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

- 1. $(\textbf{D},\oplus,\textbf{0})$ and $(\textbf{D},\otimes,\textbf{1})$ are commutative monoids,
- 2. \otimes is distributive over \oplus ,
- 3. **0** is an annihilator of \otimes in **D**.

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

- 1. $(\textbf{D},\oplus,\textbf{0})$ and $(\textbf{D},\otimes,\textbf{1})$ are commutative monoids,
- 2. \otimes is distributive over \oplus ,
- 3. **0** is an annihilator of \otimes in **D**.

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

- 1. $(\textbf{D},\oplus,\textbf{0})$ and $(\textbf{D},\otimes,\textbf{1})$ are commutative monoids,
- 2. \otimes is distributive over \oplus ,
- 3. **0** is an annihilator of \otimes in **D**.

Example

 $\mathbb{B} = (\{ \text{False}, \text{True} \}, \lor, \land, \text{False}, \text{True})$

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

- 1. $(\textbf{D},\oplus,\textbf{0})$ and $(\textbf{D},\otimes,\textbf{1})$ are commutative monoids,
- 2. \otimes is distributive over \oplus ,
- 3. **0** is an annihilator of \otimes in **D**.

$$\begin{split} \mathbb{B} &= (\{ \mathrm{False}, \ \mathrm{True} \}, \lor, \land, \mathrm{False}, \mathrm{True}) \\ \mathbb{T} &= (\mathbb{N} \cup \{ \infty \}, \mathsf{min}, +, \infty, \mathbf{0}) \end{split}$$

A (commutative) *semiring* is an algebraic structure $\mathbb{S} = (\mathbf{D}, \oplus, \otimes, \mathbf{0}, \mathbf{1})$, where \oplus and \otimes are the *addition* and *multiplication* in \mathbb{S} such that:

- 1. $(\textbf{D},\oplus,\textbf{0})$ and $(\textbf{D},\otimes,\textbf{1})$ are commutative monoids,
- 2. \otimes is distributive over \oplus ,
- 3. **0** is an annihilator of \otimes in **D**.

$$\begin{split} \mathbb{B} &= (\{\mathrm{False}, \, \mathrm{True}\}, \lor, \land, \mathrm{False}, \mathrm{True})\\ \mathbb{T} &= (\mathbb{N} \cup \{\infty\}, \mathsf{min}, +, \infty, \mathbf{0})\\ \mathbb{C} &= (\mathbb{N}, +, *, \mathbf{0}, \mathbf{1}) \end{split}$$

$$q():-R_1(\vec{x_1}), R_2(\vec{x_2}), \ldots, R_n(\vec{x_n})$$

$$q(i) := -R_1(\vec{x}_1), R_2(\vec{x}_2), \dots, R_n(\vec{x}_n)$$
$$q(i) := \bigvee_{v:\text{valuation}} \bigwedge_{i=1}^n R_i(v(\vec{x}_i))$$

$$q():-R_1(\vec{x_1}), R_2(\vec{x_2}), \ldots, R_n(\vec{x_n})$$

$$q(I) := \bigvee_{v: valuation} \bigwedge_{i=1}^{n} R_i(v(\vec{x_i}))$$

$$q(I) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^{n} R_i(v(\vec{x_i}))$$

$$q():-R_1(\vec{x}_1), R_2(\vec{x}_2), \ldots, R_n(\vec{x}_n)$$

$$q(I) := \bigvee_{v: valuation} \bigwedge_{i=1}^{n} R_i(v(\vec{x_i}))$$

$$q(I) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^{n} R_i(v(\vec{x}_i))$$

$$q():-R_1(\vec{x}_1), R_2(\vec{x}_2), \ldots, R_n(\vec{x}_n)$$

$$q(I) := \bigvee_{v: ext{valuation}} \bigwedge_{i=1}^n R_i(v(ec{x_i}))$$

$$q(I) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^{n} R_i(v(\vec{x_i}))$$

Example

 $\mathbb{B} \leftrightarrow \mathsf{set} \ \mathsf{semantics}$

$$q():-R_1(\vec{x}_1), R_2(\vec{x}_2), \ldots, R_n(\vec{x}_n)$$

$$q(I) := \bigvee_{v: ext{valuation}} \bigwedge_{i=1}^n R_i(v(ec{x_i}))$$

$$q(I) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^{n} R_i(v(\vec{x_i}))$$

Example

 $\mathbb{B} \leftrightarrow \text{set semantics}$

 $\mathbb{C} \leftrightarrow \mathsf{bag}\ \mathsf{semantics}$

$$q():-R_1(\vec{x}_1), R_2(\vec{x}_2), \ldots, R_n(\vec{x}_n)$$

$$q(I) := \bigvee_{v: ext{valuation}} \bigwedge_{i=1}^n R_i(v(ec{x_i}))$$

$$q(I) := \bigoplus_{v: \text{valuation}} \bigotimes_{i=1}^{n} R_i(v(\vec{x_i}))$$

Example

$$\label{eq:setsemantics} \begin{split} \mathbb{B} &\leftrightarrow \mathsf{set semantics} \\ \mathbb{C} &\leftrightarrow \mathsf{bag semantics} \end{split}$$

 $\mathbb{T} \leftrightarrow \text{optimization}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Given an edge-weighted graph G = (V, weight)

Example

Given an edge-weighted graph G = (V, weight)

 $\begin{array}{c} \text{Compute } \bigvee_{\substack{V' \subseteq V \\ |V'| = k}} \bigwedge_{\substack{\{v,w\} \in V'}} \text{weight}(\{v,w\}) \leftrightarrow \text{Boolean } k\text{-clique} \end{array}$

Example

Given an edge-weighted graph G = (V, weight)

 $\mathsf{Compute} \bigvee_{\substack{V' \subseteq V \\ |V'| = k}} \bigwedge_{\{v,w\} \in V'} \mathsf{weight}(\{v,w\}) \leftrightarrow \mathsf{Boolean} \ k\text{-clique}$

Compute $\min_{\substack{V' \subseteq V \\ |V'| = k}} \sum_{\{v,w\} \in V'} \operatorname{weight}(\{v,w\}) \leftrightarrow \operatorname{Minimum} k$ -clique

Example

Given an edge-weighted graph G = (V, weight)

 $\mathsf{Compute} \bigvee_{\substack{V' \subseteq V \\ |V'| = k}} \bigwedge_{\{v,w\} \in V'} \mathsf{weight}(\{v,w\}) \leftrightarrow \mathsf{Boolean} \ k\text{-clique}$

Compute $\min_{\substack{V' \subseteq V \\ |V'| = k}} \sum_{\{v,w\} \in V'} \operatorname{weight}(\{v,w\}) \leftrightarrow \operatorname{Minimum} k$ -clique

 $\begin{array}{l} \text{Compute } \sum_{\substack{V' \subseteq V \\ |V'| = k}} \prod_{\{v,w\} \in V'} \text{weight}(\{v,w\}) \leftrightarrow \text{Counting } k\text{-clique} \end{array}$

Provenance Polynomial, I

Provenance Polynomial, I

The provenance polynomial for a full CQ Q is parameterized by an underlying semiring S, a hypergraph H, and an instance I:

$$p_I^Q := \bigoplus_{t \in Q(I)} \bigotimes_{e \in \mathcal{E}} x_{t[e]}^e$$

where $x_{t[e]}^{e}$ is a variable that captures the value of the tuple $t[e] \in R_{e}$ in the semiring domain **D** [GKT07].

Provenance Polynomial, I

The provenance polynomial for a full CQ Q is parameterized by an underlying semiring S, a hypergraph H, and an instance I:

$$p_I^Q := \bigoplus_{t \in Q(I)} \bigotimes_{e \in \mathcal{E}} x_{t[e]}^e$$

where $x_{t[e]}^{e}$ is a variable that captures the value of the tuple $t[e] \in R_{e}$ in the semiring domain **D** [GKT07].

When we work over the counting semiring, the provenance polynomial becomes a polynomial:

$$p_I^{\mathcal{H}} := \sum_{t \in Q(I)} \prod_{e \in \mathcal{E}} x_{t[e]}^e$$

Provenance Polynomial, II

Provenance Polynomial, II

Example

 $Q(x_1, x_2, x_3, x_4) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$

Provenance Polynomial, II

$$Q(x_1, x_2, x_3, x_4) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

$$R(x_1, x_2) = \{(a_1, a_2), (c_1, c_2)\}$$
$$Q(x_1, x_2, x_3, x_4) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

$$R(x_1, x_2) = \{(a_1, a_2), (c_1, c_2)\}$$

$$S(x_2, x_3) = \{(a_2, a_3), (c_2, d_3)\}$$

$$\begin{aligned} &Q(x_1, x_2, x_3, x_4) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1) \\ &R(x_1, x_2) = \{(a_1, a_2), (c_1, c_2)\} \\ &S(x_2, x_3) = \{(a_2, a_3), (c_2, d_3)\} \\ &T(x_3, x_4) = \{(a_3, a_4), (a_3, b_4), (d_3, c_4)\} \end{aligned}$$

$$Q(x_1, x_2, x_3, x_4) := -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

$$R(x_1, x_2) = \{(a_1, a_2), (c_1, c_2)\}$$

$$S(x_2, x_3) = \{(a_2, a_3), (c_2, d_3)\}$$

$$T(x_3, x_4) = \{(a_3, a_4), (a_3, b_4), (d_3, c_4)\}$$

$$U(x_4, x_1) = \{(a_4, a_1), (b_4, a_1), (c_4, c_1)\}$$

$$Q(x_1, x_2, x_3, x_4) := -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

$$R(x_1, x_2) = \{(a_1, a_2), (c_1, c_2)\}$$

$$S(x_2, x_3) = \{(a_2, a_3), (c_2, d_3)\}$$

$$T(x_3, x_4) = \{(a_3, a_4), (a_3, b_4), (d_3, c_4)\}$$

$$U(x_4, x_1) = \{(a_4, a_1), (b_4, a_1), (c_4, c_1)\}$$

$$Q(I) = \{(a_1, a_2, a_3, a_4), (a_1, a_2, a_3, b_4), (c_1, c_2, d_3, c_4)\}$$

$$Q(x_1, x_2, x_3, x_4) : -R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$$

$$R(x_1, x_2) = \{(a_1, a_2), (c_1, c_2)\}$$

$$S(x_2, x_3) = \{(a_2, a_3), (c_2, d_3)\}$$

$$T(x_3, x_4) = \{(a_3, a_4), (a_3, b_4), (d_3, c_4)\}$$

$$U(x_4, x_1) = \{(a_4, a_1), (b_4, a_1), (c_4, c_1)\}$$

$$Q(I) = \{(a_1, a_2, a_3, a_4), (a_1, a_2, a_3, b_4), (c_1, c_2, d_3, c_4)\}$$

$$p_l^Q = (x_{a_1,a_2} \otimes x_{a_2,a_3} \otimes x_{a_3,a_4} \otimes x_{a_4,a_1}) \oplus \\ (x_{a_1,a_2} \otimes x_{a_2,a_3} \otimes x_{a_3,b_4} \otimes x_{b_4,a_1}) \oplus \\ (x_{c_1,c_2} \otimes x_{c_2,d_3} \otimes x_{d_3,c_4} \otimes x_{c_4,c_1})$$

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

Future Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where \mathcal{T} is a tree and $\chi : \mathcal{V}(\mathcal{T}) \to 2^{\mathcal{V}}$, such that (1) $\forall e \in \mathcal{E}$ is a subset for some $\chi(t), t \in \mathcal{V}(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}$ is a non-empty connected sub-tree of \mathcal{T} .

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where \mathcal{T} is a tree and $\chi : \mathcal{V}(\mathcal{T}) \to 2^{\mathcal{V}}$, such that (1) $\forall e \in \mathcal{E}$ is a subset for some $\chi(t), t \in \mathcal{V}(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}$ is a non-empty connected sub-tree of \mathcal{T} .

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where \mathcal{T} is a tree and $\chi : \mathcal{V}(\mathcal{T}) \to 2^{\mathcal{V}}$, such that (1) $\forall e \in \mathcal{E}$ is a subset for some $\chi(t), t \in \mathcal{V}(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}$ is a non-empty connected sub-tree of \mathcal{T} .

The *f*-width of a TD (\mathcal{T}, χ) is max{ $f(\chi(t)) | t \in V(\mathcal{T})$ }.

The *f*-width of a TD (\mathcal{T}, χ) is max{ $f(\chi(t)) | t \in V(\mathcal{T})$ }.

The *f*-width of a \mathcal{H} is the minimum of *f*-widths of all its TDs.

The *f*-width of a TD (\mathcal{T}, χ) is max{ $f(\chi(t)) | t \in V(\mathcal{T})$ }.

The *f*-width of a \mathcal{H} is the minimum of *f*-widths of all its TDs.

The \mathcal{F} -width of a \mathcal{H} is sup{f-width(\mathcal{H}) | $f \in \mathcal{F}$ } [Mar13].

The *f*-width of a TD (\mathcal{T}, χ) is max{ $f(\chi(t)) | t \in V(\mathcal{T})$ }.

The *f*-width of a \mathcal{H} is the minimum of *f*-widths of all its TDs.

The \mathcal{F} -width of a \mathcal{H} is sup{f-width(\mathcal{H}) | $f \in \mathcal{F}$ } [Mar13].

The *f*-width of a TD (\mathcal{T}, χ) is max{ $f(\chi(t)) \mid t \in V(\mathcal{T})$ }.

The *f*-width of a \mathcal{H} is the minimum of *f*-widths of all its TDs.

The \mathcal{F} -width of a \mathcal{H} is sup{f-width(\mathcal{H}) | $f \in \mathcal{F}$ } [Mar13].

Example

Let s(B) = |B| - 1. The *treewidth* of \mathcal{H} is $tw(\mathcal{H}) := s$ -width(\mathcal{H}).

The *f*-width of a TD (\mathcal{T}, χ) is max{ $f(\chi(t)) | t \in V(\mathcal{T})$ }.

The *f*-width of a \mathcal{H} is the minimum of *f*-widths of all its TDs.

The \mathcal{F} -width of a \mathcal{H} is sup{f-width(\mathcal{H}) | $f \in \mathcal{F}$ } [Mar13].

Example

Let s(B) = |B| - 1. The *treewidth* of \mathcal{H} is $\mathsf{tw}(\mathcal{H}) := s$ -width (\mathcal{H}) . Let $\rho^*(\mathcal{H}) = \min_{\gamma} \sum_{e \in \mathcal{E}(\mathcal{H})} \gamma(e)$ where $\gamma : \mathcal{E}(\mathcal{H}) \to [0, 1]$ is a fractional edge cover. The *fractional hypertree width* of \mathcal{H} is $\mathsf{fhw}(\mathcal{H}) := \rho^*$ -width (\mathcal{H}) .

The *f*-width of a TD (\mathcal{T}, χ) is max{ $f(\chi(t)) | t \in V(\mathcal{T})$ }.

The *f*-width of a \mathcal{H} is the minimum of *f*-widths of all its TDs.

The \mathcal{F} -width of a \mathcal{H} is sup{f-width(\mathcal{H}) | $f \in \mathcal{F}$ } [Mar13].

Example

Let s(B) = |B| - 1. The *treewidth* of \mathcal{H} is $\mathsf{tw}(\mathcal{H}) := s$ -width (\mathcal{H}) . Let $\rho^*(\mathcal{H}) = \min_{\gamma} \sum_{e \in \mathcal{E}(\mathcal{H})} \gamma(e)$ where $\gamma : \mathcal{E}(\mathcal{H}) \to [0, 1]$ is a fractional edge cover. The *fractional hypertree width* of \mathcal{H} is $\mathsf{fhw}(\mathcal{H}) := \rho^*$ -width (\mathcal{H}) .

Remark

The famous Worst-Case Optimal Join achieves $O(m^{\text{fhw}(\mathcal{H})})$ running time for computing \mathcal{H} [NPRR18].

<ロト < 部 ト < 目 ト < 目 ト < 目 > つ へ () 16 / 37

A function $b: 2^{\mathcal{V}(\mathcal{H})} \to \mathbb{R}^+$ is submodular if $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y) \ \forall X, Y \subseteq V(H).$

A function $b: 2^{\mathcal{V}(\mathcal{H})} \to \mathbb{R}^+$ is submodular if $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y) \ \forall X, Y \subseteq V(H).$

Let \mathcal{F} contain every edge-dominated monotone submodular function b on $\mathcal{V}(\mathcal{H})$ with $b(\emptyset) = 0$.

A function $b: 2^{\mathcal{V}(\mathcal{H})} \to \mathbb{R}^+$ is submodular if $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y) \ \forall X, Y \subseteq V(H).$

Let \mathcal{F} contain every edge-dominated monotone submodular function b on $\mathcal{V}(\mathcal{H})$ with $b(\emptyset) = 0$.

The submodular width of \mathcal{H} is subw $(\mathcal{H}) := \mathcal{F}$ -width (\mathcal{H}) .

A function $b: 2^{\mathcal{V}(\mathcal{H})} \to \mathbb{R}^+$ is submodular if $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y) \ \forall X, Y \subseteq V(H).$

Let \mathcal{F} contain every edge-dominated monotone submodular function b on $\mathcal{V}(\mathcal{H})$ with $b(\emptyset) = 0$.

The submodular width of \mathcal{H} is subw $(\mathcal{H}) := \mathcal{F}$ -width (\mathcal{H}) .

Theorem (Khamis, Ngo & Suciu, 16')

Any $\mathsf{CSP}(\mathcal{H})$ can be computed in time $\tilde{O}(m^{\mathsf{subw}(\mathcal{H})})$.

A function $b: 2^{\mathcal{V}(\mathcal{H})} \to \mathbb{R}^+$ is submodular if $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y) \ \forall X, Y \subseteq V(H).$

Let \mathcal{F} contain every edge-dominated monotone submodular function b on $\mathcal{V}(\mathcal{H})$ with $b(\emptyset) = 0$.

The submodular width of \mathcal{H} is subw $(\mathcal{H}) := \mathcal{F}$ -width (\mathcal{H}) .

Theorem (Khamis, Ngo & Suciu, 16') Any $CSP(\mathcal{H})$ can be computed in time $\tilde{O}(m^{subw(\mathcal{H})})$.

Remark

This will be the benchmark for our conditional lower bound.

A function $h: 2^{[n]} \to \mathbb{R}_+$ is called a *set function* on [n].

A function $h: 2^{[n]} \to \mathbb{R}_+$ is called a *set function* on [n].

A set function is *entropic* if there exist random variables A_1, \ldots, A_n such that $h(S) = H((A_i)_{i \in S})$ for any $S \subseteq [n]$, where H is the joint entropy of a set of variables.

A function $h: 2^{[n]} \to \mathbb{R}_+$ is called a *set function* on [n].

A set function is *entropic* if there exist random variables A_1, \ldots, A_n such that $h(S) = H((A_i)_{i \in S})$ for any $S \subseteq [n]$, where H is the joint entropy of a set of variables.

Let Γ_n^* be the set of all entropic functions of order *n*, and $\overline{\Gamma}_n^*$ the topological closure of Γ_n^* .

A function $h: 2^{[n]} \to \mathbb{R}_+$ is called a *set function* on [n].

A set function is *entropic* if there exist random variables A_1, \ldots, A_n such that $h(S) = H((A_i)_{i \in S})$ for any $S \subseteq [n]$, where H is the joint entropy of a set of variables.

Let Γ_n^* be the set of all entropic functions of order *n*, and $\overline{\Gamma}_n^*$ the topological closure of Γ_n^* .

The *entropic width* of \mathcal{H} is $entw(\mathcal{H}) := \overline{\Gamma}_n^*$ -width(\mathcal{H}).

A function $h: 2^{[n]} \to \mathbb{R}_+$ is called a *set function* on [n].

A set function is *entropic* if there exist random variables A_1, \ldots, A_n such that $h(S) = H((A_i)_{i \in S})$ for any $S \subseteq [n]$, where H is the joint entropy of a set of variables.

Let Γ_n^* be the set of all entropic functions of order *n*, and $\overline{\Gamma}_n^*$ the topological closure of Γ_n^* .

The *entropic width* of \mathcal{H} is $entw(\mathcal{H}) := \overline{\Gamma}_n^*$ -width(\mathcal{H}).

Remark

It remains open whether computing $entw(\mathcal{H})$ is even decidable.

Let DC be a set of triples $(X, Y, N_{Y|X})$ for some $X \subset Y \subseteq [n]$ and $N_{Y|X} \in \mathbb{N}$ that encodes a set of *degree constraints*.

Let DC be a set of triples $(X, Y, N_{Y|X})$ for some $X \subset Y \subseteq [n]$ and $N_{Y|X} \in \mathbb{N}$ that encodes a set of *degree constraints*.

An instance I satisfies the constraints if $|\pi_Y(R_e \ltimes t_X)| \le N_{Y|X}$ for every relation R_e in I with $X \subseteq Y \subseteq e$ and every tuple t_X .

Let DC be a set of triples $(X, Y, N_{Y|X})$ for some $X \subset Y \subseteq [n]$ and $N_{Y|X} \in \mathbb{N}$ that encodes a set of *degree constraints*.

An instance I satisfies the constraints if $|\pi_Y(R_e \ltimes t_X)| \le N_{Y|X}$ for every relation R_e in I with $X \subseteq Y \subseteq e$ and every tuple t_X .

Let DC be a set of triples $(X, Y, N_{Y|X})$ for some $X \subset Y \subseteq [n]$ and $N_{Y|X} \in \mathbb{N}$ that encodes a set of *degree constraints*.

An instance I satisfies the constraints if $|\pi_Y(R_e \ltimes t_X)| \le N_{Y|X}$ for every relation R_e in I with $X \subseteq Y \subseteq e$ and every tuple t_X .

Example

A constraint of the form (\emptyset, e, N_e) is simply a cardinality constraint.

Let DC be a set of triples $(X, Y, N_{Y|X})$ for some $X \subset Y \subseteq [n]$ and $N_{Y|X} \in \mathbb{N}$ that encodes a set of *degree constraints*.

An instance I satisfies the constraints if $|\pi_Y(R_e \ltimes t_X)| \le N_{Y|X}$ for every relation R_e in I with $X \subseteq Y \subseteq e$ and every tuple t_X .

Example

A constraint of the form (\emptyset, e, N_e) is simply a cardinality constraint.

A constraint of the form (X, Y, 1) is a Functional Dependency.
Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as constraints on entropic functions as follows:

$$\mathsf{HDC} := \left\{ h: 2^{[n]} \to \mathbb{R}_+ \mid \bigwedge_{(X,Y,N_{Y|X}) \in \mathsf{DC}} h(Y|X) \le \log N_{Y|X} \right\}$$

where h(Y|X) := h(Y) - h(X) [KNS17].

Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as constraints on entropic functions as follows:

$$\mathsf{HDC} := \left\{ h: 2^{[n]} \to \mathbb{R}_+ \mid \bigwedge_{(X,Y,N_{Y|X}) \in \mathsf{DC}} h(Y|X) \le \log N_{Y|X} \right\}$$

where h(Y|X) := h(Y) - h(X) [KNS17].

The degree-aware entropic width of \mathcal{H} is

da-entw(\mathcal{H} , HDC) := ($\overline{\Gamma}_n^* \cap$ HDC)-width(\mathcal{H}).

(日)

19/37

Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as constraints on entropic functions as follows:

$$\mathsf{HDC} := \left\{ h: 2^{[n]} \to \mathbb{R}_+ \mid \bigwedge_{(X,Y,N_{Y|X}) \in \mathsf{DC}} h(Y|X) \le \log N_{Y|X} \right\}$$

where h(Y|X) := h(Y) - h(X) [KNS17].

The degree-aware entropic width of \mathcal{H} is

da-entw(\mathcal{H} , HDC) := ($\overline{\Gamma}_n^* \cap$ HDC)-width(\mathcal{H}).

Remark

This will be the benchmark for our unconditional lower bound.

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity

Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

Future Work

Fine-Grained Conjectures

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q (C 20 / 37

Fine-Grained Conjectures

Hypothesis (Combinatorial *k*-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any combinatorial algorithm to detect a k-clique in a graph with n nodes requires $n^{k-o(1)}$ time on a Word RAM model.

Fine-Grained Conjectures

Hypothesis (Combinatorial *k*-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any combinatorial algorithm to detect a k-clique in a graph with n nodes requires $n^{k-o(1)}$ time on a Word RAM model.

Hypothesis (Min Weight *k*-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any randomized algorithm to find a k-clique of minimum total edge weight requires $n^{k-o(1)}$ time on a Word RAM model.

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

- Main Results
- Parse Tree

Future Work

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq \mathcal{V}$ such that (1) $\forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in \mathcal{H} .

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq \mathcal{V}$ such that (1) $\forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in \mathcal{H} .

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq \mathcal{V}$ such that (1) $\forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in \mathcal{H} .

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq \mathcal{V}$ such that (1) $\forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in \mathcal{H} .

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq \mathcal{V}$ such that (1) $\forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in \mathcal{H} .

Definition (Touch)

We say $X, Y \subseteq \mathcal{V}$ touch in \mathcal{H} if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A *k*-clique embedding from C_k to \mathcal{H} is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq \mathcal{V}$ such that (1) $\forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in \mathcal{H} .

<ロト < 回 > < 直 > < 直 > < 直 > < 三 > < 三 > 三 の < で 22/37

Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of $\psi \text{ wed}(\psi) := \max_{e} d_{\psi}(e).$

Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of $\psi \text{ wed}(\psi) := \max_{e} d_{\psi}(e).$

Definition (Clique Embedding Power)

The *k*-clique embedding power is $\operatorname{emb}_k(\mathcal{H}) := \max_{\psi} \frac{k}{\operatorname{wed}(\psi)}$. The clique embedding power is $\operatorname{emb}(\mathcal{H}) := \sup_{k \ge 3} \operatorname{emb}_k(\mathcal{H})$.

Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of $\psi \text{ wed}(\psi) := \max_{e} d_{\psi}(e).$

Definition (Clique Embedding Power)

The *k*-clique embedding power is $\operatorname{emb}_k(\mathcal{H}) := \max_{\psi} \frac{k}{\operatorname{wed}(\psi)}$. The clique embedding power is $\operatorname{emb}(\mathcal{H}) := \sup_{k \ge 3} \operatorname{emb}_k(\mathcal{H})$.

Definition (Weak Edge Depth)

 $\forall e \text{ the weak edge depth of } e \text{ is } d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|.$ The weak edge depth of ψ wed $(\psi) := \max_{e} d_{\psi}(e).$

Definition (Clique Embedding Power)

The *k*-clique embedding power is $\operatorname{emb}_k(\mathcal{H}) := \max_{\psi} \frac{k}{\operatorname{wed}(\psi)}$. The clique embedding power is $\operatorname{emb}(\mathcal{H}) := \sup_{k \ge 3} \operatorname{emb}_k(\mathcal{H})$.

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound Circuits over Semirings

- Main Results
- Parse Tree

Future Work

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Theorem (F., Koutris & Zhao, 23')

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Remark

In a very recent work, Bringmann and Gorbachev showed that $emb(\mathcal{H})$ is tight for all $CSP(\mathcal{H})$ that admits sub-quadratic algorithm [BG24].

Theorem (F., Koutris & Zhao, 23')

For any \mathcal{H} , $CSP(\mathcal{H})$ cannot be computed via a combinatorial algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Remark

In a very recent work, Bringmann and Gorbachev showed that $emb(\mathcal{H})$ is tight for all $CSP(\mathcal{H})$ that admits sub-quadratic algorithm [BG24].

In fact, it captures all \mathcal{H} that admits sub-quadratic algorithm: If CSP(\mathcal{H}) admits a sub-quadratic algorithm, then emb(\mathcal{H}) < 2, and in that case there exists an $O(|I|^{emb(\mathcal{H})})$ algorithm.

Semiring Oblivious Reduction

 The proof can be adapted to tropical semiring (min k-clique) by assigning each pair $\{u, v\}$ to a unique hyperedge according to ψ .

The proof can be adapted to tropical semiring (min k-clique) by assigning each pair $\{u, v\}$ to a unique hyperedge according to ψ .

Theorem (F., Koutris & Zhao, 23')

For any \mathcal{H} , $CSP(\mathcal{H})$ over tropical semiring cannot be computed via any randomized algorithm in time $O(|I|^{emb(\mathcal{H})-\epsilon})$ unless the Min Weight k-Clique Conjecture is false.

Examples

	emb	subw
Acyclic	1	1
Chordal	=	=
ℓ -cycle	$2-1/\lceil \ell/2 \rceil$	$2-1/\lceil \ell/2 ceil$
$K_{2,\ell}$	$2-1/\ell$	$2-1/\ell$
K _{3,3}	2	2
A_ℓ	$(\ell-1)/2$	$(\ell-1)/2$
$\mathcal{H}_{\ell,k}$	ℓ/k	ℓ/k
Q_b	17/9	2
Q_{hb}	7/4	2

Table: Clique embedding power and submodular width for some classes of queries

Examples

	emb	subw
Acyclic	1	1
Chordal	=	=
ℓ -cycle	$2-1/\lceil \ell/2 \rceil$	$2-1/\lceil \ell/2 ceil$
$K_{2,\ell}$	$2-1/\ell$	$2-1/\ell$
K _{3,3}	2	2
A_ℓ	$(\ell-1)/2$	$(\ell-1)/2$
$\mathcal{H}_{\ell,k}$	ℓ/k	ℓ/k
Q_b	17/9	2
Q _{hb}	7/4	2

Table: Clique embedding power and submodular width for some classes of queries

Remark

Bringmann and Gorbachev showed $\Omega(m^2)$ lower bound for both Q_b and Q_{hb} through MinConv conjecture [BG24].

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings

Main Results Parse Tree

Future Work

Circuits over Semirings

Recall our provenance polynomial $p_I^Q = \bigoplus_{t \in Q(I)} \bigotimes_{e \in \mathcal{E}} x_{t[e]}^e$.

Circuits over Semirings

Recall our provenance polynomial $p_l^Q = \bigoplus_{t \in Q(I)} \bigotimes_{e \in \mathcal{E}} x_{t[e]}^e$.

A circuit *F* over a semiring \mathbb{S} is a Directed Acyclic Graph (DAG) with input nodes variables in a set S_x containing $x_{t[e]}^e$'s and the constants **0**, **1**. Every other node is labelled by \oplus or \otimes and has fan-in 2; these nodes are called \oplus -gates and \otimes -gates, respectively.

Circuits over Semirings

Recall our provenance polynomial $p_I^Q = \bigoplus_{t \in Q(I)} \bigotimes_{e \in \mathcal{E}} x_{t[e]}^e$.

A circuit *F* over a semiring \mathbb{S} is a Directed Acyclic Graph (DAG) with input nodes variables in a set S_x containing $x_{t[e]}^e$'s and the constants **0**, **1**. Every other node is labelled by \oplus or \otimes and has fan-in 2; these nodes are called \oplus -gates and \otimes -gates, respectively.

A circuit F is said to *compute* a polynomial p if F and p coincide as functions (interpreted over the semiring \mathbb{S}), and is said to *produce* a polynomial p if F and p have exactly the same terms, i.e. monomials with their coefficients, syntactically.

$$p_I^Q = (x_{a_1,a_2} \otimes x_{a_2,a_3} \otimes x_{a_3,a_4} \otimes x_{a_4,a_1}) \oplus \\ (x_{a_1,a_2} \otimes x_{a_2,a_3} \otimes x_{a_3,b_4} \otimes x_{b_4,a_1}) \oplus \\ (x_{c_1,c_2} \otimes x_{c_2,d_3} \otimes x_{d_3,c_4} \otimes x_{c_4,c_1})$$
Example

$$p_I^Q = (x_{a_1,a_2} \otimes x_{a_2,a_3} \otimes x_{a_3,a_4} \otimes x_{a_4,a_1}) \oplus \\ (x_{a_1.a_2} \otimes x_{a_2,a_3} \otimes x_{a_3,b_4} \otimes x_{b_4,a_1}) \oplus \\ (x_{c_1,c_2} \otimes x_{c_2,d_3} \otimes x_{d_3,c_4} \otimes x_{c_4,c_1})$$

 $Q(x_1, x_2, x_3, x_4) \leftarrow R(x_1, x_2), S(x_2, x_3), T(x_3, x_4), U(x_4, x_1)$

Motivation

1. Circuits can be seen as a computational model that corresponds to algorithms that *solely* exploit the algebraic semiring structure [Juk15].

Motivation

- 1. Circuits can be seen as a computational model that corresponds to algorithms that *solely* exploit the algebraic semiring structure [Juk15].
- Circuits that compute the provenance polynomial of a CQ can be viewed as a concise representation of the corresponding provenance polynomial interpreted over the given semiring [OZ15, GKT07].

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

Future Work

Main Results

<ロト < 回 > < 注 > < 注 > < 注 > 注 の Q (~ 29 / 37

Main Results

Theorem (F., Koutris & Zhao, 24')

For any $\epsilon > 0$ and any hypergraph \mathcal{H} , there exists an instance I and k > 0 that satisfies the constraints HDC $\times k$ such that any circuit F that computes the polynomial $p_I^{\mathcal{H}}$ over $\{\mathbb{B}_{lin}, \mathbb{T}, \mathbb{C}\}$ has size

 $\log |F| \ge (1 - \epsilon) \cdot da$ -entw($\mathcal{H}, HDC \times k$).

Main Results

Theorem (F., Koutris & Zhao, 24')

For any $\epsilon > 0$ and any hypergraph \mathcal{H} , there exists an instance I and k > 0 that satisfies the constraints HDC $\times k$ such that any circuit F that computes the polynomial $p_I^{\mathcal{H}}$ over $\{\mathbb{B}_{lin}, \mathbb{T}, \mathbb{C}\}$ has size

$$\log |F| \ge (1 - \epsilon) \cdot da\text{-entw}(\mathcal{H}, \text{HDC} \times k).$$

Theorem (F., Koutris & Zhao, 24')

Let I be any instance that satisfies the degree constraint DC. There exists a multilinear and homogeneous circuit F of size $O(2^{da-entw(\mathcal{H},HDC)})$ that produces the polynomial $p_I^{\mathcal{H}}$ over any idempotent semiring.

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

Future Work

A *parse tree* pt is a rooted tree in a circuit F defined inductively as follows:

A *parse tree* pt is a rooted tree in a circuit F defined inductively as follows:

1. The root of pt is an output gate.

A *parse tree* pt is a rooted tree in a circuit F defined inductively as follows:

- 1. The root of pt is an output gate.
- 2. If a \otimes -gate is in pt, include all of its children in F as its children in pt.

A *parse tree* pt is a rooted tree in a circuit F defined inductively as follows:

- 1. The root of pt is an output gate.
- 2. If a \otimes -gate is in pt, include all of its children in F as its children in pt.
- 3. If a \oplus -gate is in pt, include exactly one of its children in F as its children in pt.

A *parse tree* pt is a rooted tree in a circuit F defined inductively as follows:

- 1. The root of pt is an output gate.
- 2. If a \otimes -gate is in pt, include all of its children in F as its children in pt.
- 3. If a \oplus -gate is in pt, include exactly one of its children in F as its children in pt.

Remark

This notion has been extensively used to prove circuit lower bound [JS82, AI03].

TD from a Parse Tree

For a monomial q in $p_I^{\mathcal{H}}$, we define a structure $\mathcal{T}_q = (\mathcal{T}, \chi)$ inductively in a bottom-up fashion from its parse tree:

- 1. For an input gate g of the variable $x_{t[e]}^e$, add a node v_g in \mathcal{T} with $\chi(v_g) = e$. The input gate g is said to be associated to the node v_g .
- 2. For a \oplus -gate g, associate g to the node that is associated to g's single child in the parse tree.
- 3. For a \otimes -gate g, let g_1 and g_2 be its children. Let q_1, q_2 be the monomials computed at g_1, g_2 respectively; and B_g be the set of vertices $v \in \mathcal{V}(\mathcal{H})$ such that all hyperedges incident to v appear either exclusively in q_1 or exclusively in q_2 . We add a node v_g with $\chi(v_g) = (\chi(v_{g_1}) \cup \chi(v_{g_2})) \setminus B_g$ as the parent of v_{g_1} and v_{g_2} in \mathcal{T} . We associate g with the new node v_g .

<ロト < 回 ト < 直 ト < 直 ト < 直 ト < 直 か Q () 32/37

Lemma

For any monomial q in $p_l^{\mathcal{H}}$, the structure $\mathcal{T}_q = (\mathcal{T}, \chi)$ is a tree decomposition of \mathcal{H} .

Lemma

For any monomial q in $p_l^{\mathcal{H}}$, the structure $\mathcal{T}_q = (\mathcal{T}, \chi)$ is a tree decomposition of \mathcal{H} .

Lemma

Let q_1, q_2 be two monomials in $p_I^{\mathcal{H}}$ and $\mathcal{T}_{q_1} = (\mathcal{T}_1, \chi_1)$, $\mathcal{T}_{q_2} = (\mathcal{T}_2, \chi_2)$ be their corresponding tree decompositions. If the parse trees of q_1, q_2 share a common \otimes -gate g, then $\chi_1(v_g) = \chi_2(v_g)$.

Lemma

For any monomial q in $p_l^{\mathcal{H}}$, the structure $\mathcal{T}_q = (\mathcal{T}, \chi)$ is a tree decomposition of \mathcal{H} .

Lemma

Let q_1, q_2 be two monomials in $p_l^{\mathcal{H}}$ and $\mathcal{T}_{q_1} = (\mathcal{T}_1, \chi_1)$, $\mathcal{T}_{q_2} = (\mathcal{T}_2, \chi_2)$ be their corresponding tree decompositions. If the parse trees of q_1, q_2 share a common \otimes -gate g, then $\chi_1(v_g) = \chi_2(v_g)$.

Remark

It is thus possible to assign a type tp(g) to each \otimes -gate g as $\chi(v_g)$ for some decomposition $\mathcal{T}_q = (\mathcal{T}, \chi)$ of a monomial q. In other words, the circuit F yields a globally consistent type assignment to each \otimes -gate in F.

Example

Example

34 / 37

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

Future Work

? Does Bringmann and Gorbachev's characterization of clique embedding power for sub-quadratic queries extend [BG24]?

- ? Does Bringmann and Gorbachev's characterization of clique embedding power for sub-quadratic queries extend [BG24]?
- ✓ For planar graphs, a variant of clique embedding power is only constant factor away from tree width.

- ? Does Bringmann and Gorbachev's characterization of clique embedding power for sub-quadratic queries extend [BG24]?
- ✓ For planar graphs, a variant of clique embedding power is only constant factor away from tree width.
- There exists classes of graphs (e.g. expanders) where the gaps between that variant of clique embedding power and the tree widths are at least quadratic [GM09].

- ? Does Bringmann and Gorbachev's characterization of clique embedding power for sub-quadratic queries extend [BG24]?
- ✓ For planar graphs, a variant of clique embedding power is only constant factor away from tree width.
- There exists classes of graphs (e.g. expanders) where the gaps between that variant of clique embedding power and the tree widths are at least quadratic [GM09].
- ? What is the gap between the clique embedding power and submodular width [Mar13]?

Circuit for CQ with self-joins

? Can we provide tight circuit lower bounds for CQ with self-joins?

Circuit for CQ with self-joins

- ? Can we provide tight circuit lower bounds for CQ with self-joins?
- ✓ Interesting connection to the notion of "minimal" queries [CS23] and the characterization of query containment parametrized by the underlying semiring [KRS12].

Circuit for Datalog

? Is the O(n³) size circuit for st-reachability given by Floyd-Warshall or Bellman-Ford optimal [KW90]?

Circuit for Datalog

- ? Is the $O(n^3)$ size circuit for *st*-reachability given by Floyd-Warshall or Bellman-Ford optimal [KW90]?
- ✓ We have obtained some results on dichotomies of regular language reachability $(\Omega(n^3)$ v.s. O(n) circuit size).

Circuit for Datalog

- ? Is the $O(n^3)$ size circuit for *st*-reachability given by Floyd-Warshall or Bellman-Ford optimal [KW90]?
- ✓ We have obtained some results on dichotomies of regular language reachability ($\Omega(n^3)$ v.s. O(n) circuit size).
- ? We are investigating the generalization of Bellman-Ford to arbitrary linear Datalog programs to construct logarithmic-depth circuit.

Preliminaries

Conjunctive Queries Sum-Product Computation Widths for CQs

Conditional Lower Bound

Fine-Grained Complexity Clique Embedding Power Main Results

Unconditional Lower Bound

Circuits over Semirings Main Results Parse Tree

Future Work

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References I

- Albert Atserias, Martin Grohe, and Dániel Marx, Size bounds and query plans for relational joins, SIAM J. Comput. 42 (2013), no. 4, 1737–1767.
- Micah Adler and Neil Immerman, An n! lower bound on formula size, ACM Trans. Comput. Log. 4 (2003), no. 3, 296–314.
- Karl Bringmann and Egor Gorbachev, A fine-grained classification of subquadratic patterns for subgraph listing and friends, arXiv preprint arXiv:2404.04369 (2024).
- Arturs Backurs and Piotr Indyk, Edit distance cannot be computed in strongly subquadratic time (unless SETH is false), SIAM J. Comput. 47 (2018), no. 3, 1087–1097.
- Andrei A. Bulatov, *The complexity of the counting constraint satisfaction problem*, J. ACM **60** (2013), no. 5, 34:1–34:41.

イロト 不同 トイヨト イヨト 二日

References II

- A dichotomy theorem for nonuniform CSPs, FOCS, IEEE Computer Society, 2017, pp. 319–330.
- Jin-Yi Cai and Xi Chen, *Complexity of counting CSP with complex weights*, J. ACM **64** (2017), no. 3, 19:1–19:39.
- Nofar Carmeli and Luc Segoufin, *Conjunctive queries with self-joins, towards a fine-grained enumeration complexity analysis*, PODS, ACM, 2023, pp. 277–289.
- Martin E. Dyer and David Richerby, An effective dichotomy for the counting constraint satisfaction problem, SIAM J. Comput. 42 (2013), no. 3, 1245–1274.
- Todd J. Green, Gregory Karvounarakis, and Val Tannen, *Provenance semirings*, PODS, ACM, 2007, pp. 31–40.

References III

- Martin Grohe and Dániel Marx, On tree width, bramble size, and expansion, J. Comb. Theory, Ser. B 99 (2009), no. 1, 218–228.
- Martin Grohe, The complexity of homomorphism and constraint satisfaction problems seen from the other side, J. ACM 54 (2007), no. 1, 1:1–1:24.
- Mark Jerrum and Marc Snir, Some exact complexity results for straight-line computations over semirings, J. ACM 29 (1982), no. 3, 874–897.
- Stasys Jukna, *Lower bounds for tropical circuits and dynamic programs*, Theory Comput. Syst. **57** (2015), no. 1, 160–194.
References IV

- Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu, *What do shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another?*, PODS, ACM, 2017, pp. 429–444.
- Egor V. Kostylev, Juan L. Reutter, and András Z. Salamon, Classification of annotation semirings over query containment, PODS, ACM, 2012, pp. 237–248.
- Mauricio Karchmer and Avi Wigderson, Monotone circuits for connectivity require super-logarithmic depth, SIAM J. Discret. Math. 3 (1990), no. 2, 255–265.
- Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams, *Tight hardness for shortest cycles and paths in sparse graphs*, SODA, SIAM, 2018, pp. 1236–1252.

References V

- Dániel Marx, Can you beat treewidth?, Theory Comput. 6 (2010), no. 1, 85–112.
- Tractable hypergraph properties for constraint satisfaction and conjunctive queries, J. ACM 60 (2013), no. 6, 42:1–42:51.
- Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra, Worst-case optimal join algorithms, J. ACM 65 (2018), no. 3, 16:1–16:40.
- Dan Olteanu and Jakub Závodný, Size bounds for factorised representations of query results, ACM Trans. Database Syst.
 40 (2015), no. 1, 2:1–2:44.
- Mihalis Yannakakis, *Algorithms for acyclic database schemes*, VLDB, IEEE Computer Society, 1981, pp. 82–94.

References VI

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Example

Given an *n*-by-*n* square matrix $A = (a_{ij})$

Example

Given an *n*-by-*n* square matrix $A = (a_{ij})$ Compute perf $(A) := \bigvee_{\sigma \in S_n} \bigwedge_{i=1}^n a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Given an *n*-by-*n* square matrix $A = (a_{ij})$ Compute perf $(A) := \bigvee_{\sigma \in S_n} \bigwedge_{i=1}^n a_{i,\sigma(i)} \Rightarrow$ P-time Compute asgmt $(A) := \min_{\sigma \in S_n} \sum_{i=1}^n a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Given an *n*-by-*n* square matrix $A = (a_{ij})$ Compute $perf(A) := \bigvee_{\sigma \in S_n} \bigwedge_{i=1}^n a_{i,\sigma(i)} \Rightarrow P$ -time Compute $asgmt(A) := \min_{\sigma \in S_n} \sum_{i=1}^n a_{i,\sigma(i)} \Rightarrow P$ -time Compute $perm(A) := \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)} \Rightarrow \#P$ -hard

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded edge size, then assuming $FPT \neq W[1]$ the following are equivalent:

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded edge size, then assuming $FPT \neq W[1]$ the following are equivalent:

1. $\mathsf{CSP}(\mathcal{C})$ is polynomial-time solvable.

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded edge size, then assuming $FPT \neq W[1]$ the following are equivalent:

1. $\mathsf{CSP}(\mathcal{C})$ is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded edge size, then assuming $FPT \neq W[1]$ the following are equivalent:

- 1. CSP(C) is polynomial-time solvable.
- 2. CSP(C) is fixed-parameter tractable.
- 3. C has bounded treewidth.

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded edge size, then assuming $FPT \neq W[1]$ the following are equivalent:

- 1. CSP(C) is polynomial-time solvable.
- 2. CSP(C) is fixed-parameter tractable.
- 3. C has bounded treewidth.

Theorem (Max, 13')

Let C be a recursively enumerable class of hypergraphs. Assuming the Exponential Time Hypothesis, CSP(C) parametrized by H is fixed-parameter tractable if and only if C has bounded submodular width.

"Hardness in easy problems"

"Hardness in easy problems"

The edit distance between two strings := $\min \#$ insertions, deletions or substitutions to transfrom from one to the other

"Hardness in easy problems"

The edit distance between two strings := $\min \#$ insertions, deletions or substitutions to transfrom from one to the other

Can be solved in $O(n^2)$ by simple dynamic programming

"Hardness in easy problems"

The edit distance between two strings := $\min \#$ insertions, deletions or substitutions to transfrom from one to the other

Can be solved in $O(n^2)$ by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time $O(n^{2-\delta})$ for some constant $\delta > 0$, then the Strong Exponential Time Hypothesis is wrong.

"Hardness in easy problems"

The edit distance between two strings := $\min \#$ insertions, deletions or substitutions to transfrom from one to the other

Can be solved in $O(n^2)$ by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time $O(n^{2-\delta})$ for some constant $\delta > 0$, then the Strong Exponential Time Hypothesis is wrong.

Informally, ETH says that 3-SAT cannot be solved in $2^{o(n)}$ time and SETH says that k-SAT needs 2^n for large k (when $k \to \infty$).

<ロト < 回 ト < 直 ト < 直 ト < 直 ト ミ の < () 37 / 37

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0, \exists k$ such that k-SAT on n variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0, \exists k$ such that k-SAT on n variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

3-SUM: No randomized algorithm can solve 3-SUM on *n* integers in $\{-n^4, \ldots, n^4\}$ cannot be solved in $O(n^{2-\epsilon})$ time for any $\epsilon > 0$.

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0, \exists k$ such that k-SAT on n variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

3-SUM: No randomized algorithm can solve 3-SUM on *n* integers in $\{-n^4, \ldots, n^4\}$ cannot be solved in $O(n^{2-\epsilon})$ time for any $\epsilon > 0$.

APSP: No randomized algorithm can solve APSP in $O(n^{3-\epsilon})$ time for $\epsilon > 0$ on *n* node graphs with edge weights $\{-n^c, \ldots, n^c\}$ and no negative cycles for large enough *c*.

. . .

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0, \exists k$ such that k-SAT on n variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

3-SUM: No randomized algorithm can solve 3-SUM on *n* integers in $\{-n^4, \ldots, n^4\}$ cannot be solved in $O(n^{2-\epsilon})$ time for any $\epsilon > 0$.

APSP: No randomized algorithm can solve APSP in $O(n^{3-\epsilon})$ time for $\epsilon > 0$ on *n* node graphs with edge weights $\{-n^c, \ldots, n^c\}$ and no negative cycles for large enough *c*.