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1. Fixing the relations — Dichotomy Theorems

Decision CSP [Bull7, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph — Class of queries
Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]
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Qxy) /\ Re(xe)

ee&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

It is called Boolean if U =) and full if U = [n].
Example
Deciding a (colored) 4-cycle

Q) < R(x1,x2), S(x2, x3), T(x3,xa), U(xa, x1)
Listing (colored) 4-cycles

Q(x1, X2, x3,Xa)  R(x1,x2), S(x2,x3), T(x3,xa), U(xa, x1)
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For every (Boolean) CQ @, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example
Q() : —R(X15X2)75(X27X3)a T(X37X4)7 U(X47X1)
X2 X3
X1 X4
Remark

We are implicitly considering CQ without self-join. We will come
back to this point for further work.
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constraint is a relation on a subset of the variables.

Example
SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP ) v.s. fixing hypergraphs (P).
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al)= B QR(v(x)
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Example

B < set semantics
C < bag semantics
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Sum-Product Computation over Semirings, |l

Example
Given an edge-weighted graph G = (V, weight)

Compute \/ N\ weight({v,w}) <> Boolean k-clique
V'CV {v,w}eV’
|V |=k

Compute min > weight({v, w}) <> Minimum k-clique
v'icv {v,w}eVv’
|V’ |=k

Compute > [ weight({v,w}) <+ Counting k-clique

V'CV {v,w}eV’
Ve

11/37



Provenance Polynomial, |

12/37



Provenance Polynomial, |

The provenance polynomial for a full CQ @ is parameterized by an
underlying semiring S, a hypergraph H, and an instance /:

= D Qxig
teQ(l) ec€

where xf[e] is a variable that captures the value of the tuple
tle] € Re in the semiring domain D [GKTO7].

12/37



Provenance Polynomial, |

The provenance polynomial for a full CQ @ is parameterized by an
underlying semiring S, a hypergraph H, and an instance /:

P = D Qxig
teQ(l) ec€

where xf[e] is a variable that captures the value of the tuple
tle] € Re in the semiring domain D [GKTO7].

When we work over the counting semiring, the provenance
polynomial becomes a polynomial:

=2 1Ix

teQ(l) ec&
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P/Q :(Xal7a2 @ Xap,a3 & Xaz,as @ Xa4731)@
(Xay.ap ® Xap,a3 & Xaz,by @ Xb4,a1)@

(XCI:C2 @ Xep,dy & Xdbs,cq @ XC47<-‘1)
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tree and x : V(T) — 2V, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V theset {t | v € x(t)} is a
non-empty connected sub-tree of 7.

Example
X2 X3

X4

.. $%
Two tree decompositions for ! are
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The F-width of a H is sup{f-width(H) | f € F} [Marl3].

Example
Let s(B) = |B| — 1. The treewidth of H is tw(H) := s-width(H).
Let p*(H) =min >  ~(e) where y: E(H) — [0,1] is a

ec&(H)
fractional edge cover. The fractional hypertree width of H is
fhw(H) := p*-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(m(%))
running time for computing H [NPRR18].
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A function b : 2¥YH) — Rtis submodular if
b(X)+b(Y)>b(XNY)+bXUY)VX,Y C V(H).

Let F contain every edge-dominated monotone submodular
function b on V(#) with b(() = 0.

The submodular width of H is subw(H) := F-width(#).
Theorem (Khamis, Ngo & Suciu, 16")
Any CSP(H) can be computed in time O(ms**¥(1)) .

Remark
This will be the benchmark for our conditional lower bound.
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A function h: 2l" — R is called a set function on [n].

A set function is entropic if there exist random variables
A1, ..., An such that h(S) = H((Aj)ies) for any S C [n], where H
is the joint entropy of a set of variables.

Let ['* be the set of all entropic functions of order n, and T, the
topological closure of 7.

The entropic width of H is entw(H) := T ,-width().

Remark
It remains open whether computing entw(#) is even decidable.

17/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation R in [ with X C Y C e and every tuple tx.

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation R in [ with X C Y C e and every tuple tx.

Example

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation Re in | with X C Y C e and every tuple tx.

Example
A constraint of the form (0, e, N) is simply a cardinality constraint.

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation Re in | with X C Y C e and every tuple tx.

Example
A constraint of the form (0, e, N) is simply a cardinality constraint.

A constraint of the form (X, Y, 1) is a Functional Dependency.

18/37
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The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC:=<{ h:2l S R | N h(Y|X) < log Nyx
(X,Y,Ny x)eDC

where h(Y|X) := h(Y) — h(X) [KNS17].

The degree-aware entropic width of H is

da-entw(H, HDC) := (T, N HDC)-width(#).

Remark
This will be the benchmark for our unconditional lower bound.
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Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires n*=°(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any randomized algorithm to find a k-clique of minimum total
edge weight requires n*=°() time on a Word RAM model.
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A k-clique embedding from Cy to H is a mapping v from v € [Kk]
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Ve the weak edge depth of e is dy(e) = |{v € [k] | ¥(v)Ne # O}].
The weak edge depth of 1) wed (1)) := max dy(e).
e

Definition (Clique Embedding Power)
The k-clique embedding power is emby(H) := mwax ﬁ(’d))' The

clique embedding power is emb(#) := sup emby(H).
k>3

Example
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Theorem (F., Koutris & Zhao, 23')
For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|/|*™2(*)=¢) unless the Combinatorial k-Clique
Conjecture is false.

Remark

In a very recent work, Bringmann and Gorbachev showed that
emb(#) is tight for all CSP(#) that admits sub-quadratic
algorithm [BG24].

In fact, it captures all H that admits sub-quadratic algorithm: If
CSP(H) admits a sub-quadratic algorithm, then emb(H) < 2, and
in that case there exists an O(|1|*™(*)) algorithm.
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Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} to a unique hyperedge according to .
Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|/|*™*(*)=€) unless the Min
Weight k-Clique Conjecture is false.
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Examples

Table: Clique embedding power and submodular width for some classes of

emb subw
Acyclic 1 1
Chordal|= =
l-cycle |2 —1/[¢/2]2 —1/[¢/2]
Koy 2—-1/¢ 2—-1/¢
K3z |2 2
Ay (t-1)/2 |(¢—-1)/2
Hek |0/k 0]k
Qp 17/9 2
Quy  [7/4 2

queries

25/37



Examples

Table: Clique embedding power and submodular width for some classes of

Remark

Bringmann and Gorbachev showed Q(m?) lower bound for both @

emb subw
Acyclic 1 1
Chordal|= =
l-cycle |2 —1/[¢/2]2 —1/[¢/2]
Koy 2—-1/¢ 2—-1/¢
K3z |2 2
Ay (t-1)/2 |(¢—-1)/2
Hek |0/k 0]k
Qp 17/9 2
Quy  [7/4 2

queries

and Qpp through MinConv conjecture [BG24].
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Recall our provenance polynomial p,Q = @teo(/) Rece Xf[e]_

A circuit F over a semiring S is a Directed Acyclic Graph (DAG)
with input nodes variables in a set S, containing xte[e]'s and the
constants 0,1. Every other node is labelled by @ or ® and has
fan-in 2; these nodes are called ®-gates and ®-gates, respectively.

A circuit F is said to compute a polynomial p if F and p coincide
as functions (interpreted over the semiring S), and is said to
produce a polynomial p if F and p have exactly the same terms,
i.e. monomials with their coefficients, syntactically.
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Example

Q _
P’ =(Xay,ay @ Xap,a3 @ Xag,a @ Xag,2 )P
(X31-32 @ Xag,a3 @ Xaz,by @ Xb4,c'f'1)EB

(Xcl,C2 & Xep,dy @ Xds,cp @ XC4,61)
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Example

Q _
P’ =(Xay,ay @ Xap,a3 @ Xag,a @ Xag,2 )P

(Xay.a, ® Xa,a3 @ Xag,by @ Xb4,c'f'1)EB

(Xcl,C2 & Xep,dy @ Xds,cp @ XC4761)

Q(x1,x2,x3,xa) < R(x1,x2),S(x2,x3), T(x3,x1), U(xa, x1)

PN
\®

o RN
) & ®
VRN / N\ /\ / N\
& Q) (a1;a) (a2, a3) (c1, @2)(c1,ca) (c2,d3) (dz,ca)
/ N\ /

(a1,24) (a3, 24) (a1, ba) (a3, b4)
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corresponds to algorithms that solely exploit the algebraic
semiring structure [Juk15].
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Motivation

1. Circuits can be seen as a computational model that
corresponds to algorithms that solely exploit the algebraic
semiring structure [Juk15].

2. Circuits that compute the provenance polynomial of a CQ can
be viewed as a concise representation of the corresponding
provenance polynomial interpreted over the given
semiring [0Z15, GKTO07].
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Main Results

Theorem (F., Koutris & Zhao, 24")

For any e > 0 and any hypergraph H, there exists an instance | and
k > 0 that satisfies the constraints HDC x k such that any circuit
F that computes the polynomial p?{ over {Byin, T,C} has size

log|F| > (1 —¢€) - da-entw(H,HDC x k).

Theorem (F., Koutris & Zhao, 24")

Let | be any instance that satisfies the degree constraint DC.
There exists a multilinear and homogeneous circuit F of size

O(292-ent(1HDC)) that produces the polynomial p]t over any
idempotent semiring.

29/37
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Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ®-gate is in pt, include all of its children in F as its
children in pt.

3. If a d-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark

This notion has been extensively used to prove circuit lower
bound [J582, Al03].
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TD from a Parse Tree

For a monomial g in p]*, we define a structure T4 = (T, X)
inductively in a bottom-up fashion from its parse tree:

1. For an input gate g of the variable xf[e], add a node v in T
with x(vg) = e. The input gate g is said to be associated to
the node vy,.

2. For a @-gate g, associate g to the node that is associated to
g's single child in the parse tree.

3. For a ®-gate g, let g1 and g» be its children. Let g1, g» be
the monomials computed at g1, g> respectively; and B, be the
set of vertices v € V(H) such that all hyperedges incident to
v appear either exclusively in g1 or exclusively in go. We add
a node vg with x(vg) = (x(vg) U x(Vg,)) \ Bg as the parent
of vg, and vg, in 7. We associate g with the new node v,.

31/37



Key Lemmas

32/37



Key Lemmas

Lemma
For any monomial q in pJt, the structure Ty = (T, x) is a tree
decomposition of H.

32/37



Key Lemmas

Lemma
For any monomial q in pJt, the structure Ty = (T, x) is a tree
decomposition of H.

Lemma

Let q1, g2 be two monomials in p]* and Tg, = (T1,x1),

Tq = (T2, x2) be their corresponding tree decompositions. If the
parse trees of q1, q» share a common ®-gate g, then

x1(ve) = x2(ve)-

32/37



Key Lemmas

Lemma
For any monomial q in pJt, the structure Ty = (T, x) is a tree
decomposition of H.

Lemma

Let q1, g2 be two monomials in p]* and Tg, = (T1,x1),

Tq = (T2, x2) be their corresponding tree decompositions. If the
parse trees of q1, q» share a common ®-gate g, then

x1(ve) = x2(ve)-

Remark

It is thus possible to assign a type tp(g) to each ®-gate g as
X(vg) for some decomposition T4 = (T, x) of a monomial q. In
other words, the circuit F yields a globally consistent type
assignment to each ®-gate in F.
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Example

Q(X13X27X37X4) — R(X17X2)7 S(X27X3)7 T(X37X4)a U(X47X1)

13 ® 24 ®
©® 123 ® 124 ® 234 ®
RN / N\ 7\ / N\
134 ® 134 ® (a1,a2) (a2, a3) (a1, 2)(c1,ca) (c2,d3) (d3,ca)
/ N\ / N\

(a1,24) (a3, 24) (a1, bs) (a3, b4)

— ~
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Example
parse tree for (a1, a2, as, as)

®
\
13 ®
PN
® 123 ®
\ / N\
134 ® (a1,22) (a2, a3)

/N

(a1,24) (a3,24)

|

tree decomposition

(13)

G
@ ® ©® 3

parse tree for (c1, ¢, d3, ca)

@
|
24 ®
N
124 ® 234 ®
/N /N

(c1,c2) (c1,ca) (c2,d3) (d3,ca)

|

tree decomposition

(24)

(2 G
®» B ® 6
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Limit of Clique Embedding Power

? Does Bringmann and Gorbachev's characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

v For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

X There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GMOQ9)].

? What is the gap between the clique embedding power and
submodular width [Mar13]?
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Circuit for CQ with self-joins

? Can we provide tight circuit lower bounds for CQ with
self-joins?

v Interesting connection to the notion of “minimal”
queries [CS23] and the characterization of query containment
parametrized by the underlying semiring [KRS12].

36/37



Circuit for Datalog

7 Is the O(n®) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

37/37



Circuit for Datalog

7 Is the O(n®) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

v/ We have obtained some results on dichotomies of regular
language reachability (Q(n®) v.s. O(n) circuit size).

37/37



Circuit for Datalog

7 Is the O(n®) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

v/ We have obtained some results on dichotomies of regular
language reachability (Q(n®) v.s. O(n) circuit size).

? We are investigating the generalization of Bellman-Ford to
arbitrary linear Datalog programs to construct
logarithmic-depth circuit.
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Example
Given an n-by-n square matrix A = (ajj)

n
Compute perf(A) :== \/ A aj ) = P-time

O'ESn i=1
n
Compute asgmt(A) := min > a; ,(;y = P-time
o€5n =1
n
Compute perm(A) := > [] aj(j) = #P-hard
c€S, i=1
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Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W([1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.
3. C has bounded treewidth.

Theorem (Max, 13')

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is

fixed-parameter tractable if and only if C has bounded submodular
width.

37/37



Fine-Grained Complexity

37/37



Fine-Grained Complexity

“Hardness in easy problems”

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time O(n*~%) for some
constant § > 0, then the Strong Exponential Time Hypothesis is
wrong.

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time O(n*~%) for some
constant § > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2°(") time
and SETH says that k-SAT needs 2" for large k (when k — o).
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