
Lower Bounds for Sum-Product Queries

Austen Z. Fan

University of Wisconsin, Madison

Preliminary Exam

1 / 37

Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

5. . . .

2 / 37

Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

5. . . .

2 / 37

Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

5. . . .

2 / 37

Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

5. . . .

2 / 37

Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

5. . . .

2 / 37

Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

5. . . .

2 / 37

Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations → Dichotomy Theorems

Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph → Class of queries

Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

3 / 37

Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations

→ Dichotomy Theorems

Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph → Class of queries

Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

3 / 37

Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations → Dichotomy Theorems

Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph → Class of queries

Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

3 / 37

Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations → Dichotomy Theorems

Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph

→ Class of queries

Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

3 / 37

Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations → Dichotomy Theorems

Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph → Class of queries

Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

3 / 37

Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations → Dichotomy Theorems

Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph → Class of queries

Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

3 / 37

What is the exact lower bound for a
given Sum-Product Query?

We partially answer the above question:

1. Conditional lower bound via fine-grained complexity

2. Unconditional lower bound via monotone circuits

5 / 37

We partially answer the above question:

1. Conditional lower bound via fine-grained complexity

2. Unconditional lower bound via monotone circuits

5 / 37

We partially answer the above question:

1. Conditional lower bound via fine-grained complexity

2. Unconditional lower bound via monotone circuits

5 / 37

Outline

Preliminaries

Conditional Lower Bound

Unconditional Lower Bound

Future Work

5 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

5 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

5 / 37

Definition

A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Definition
A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Definition
A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Definition
A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Definition
A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Definition
A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Definition
A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Definition
A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi)i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

6 / 37

Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark
We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7 / 37

Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark
We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7 / 37

Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark
We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7 / 37

Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark
We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7 / 37

Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark
We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7 / 37

Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark

We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7 / 37

Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark
We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

7 / 37

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).

8 / 37

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).

8 / 37

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).

8 / 37

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).

8 / 37

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).

8 / 37

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).

8 / 37

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).

8 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,

3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)

T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)

C = (N,+, ∗, 0, 1)

9 / 37

Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)

9 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics
C↔ bag semantics
T↔ optimization

10 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics
C↔ bag semantics
T↔ optimization

10 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics
C↔ bag semantics
T↔ optimization

10 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics
C↔ bag semantics
T↔ optimization

10 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics
C↔ bag semantics
T↔ optimization

10 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics

C↔ bag semantics
T↔ optimization

10 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics
C↔ bag semantics

T↔ optimization

10 / 37

Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

B↔ set semantics
C↔ bag semantics
T↔ optimization

10 / 37

Sum-Product Computation over Semirings, II

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

11 / 37

Sum-Product Computation over Semirings, II

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

11 / 37

Sum-Product Computation over Semirings, II

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

11 / 37

Sum-Product Computation over Semirings, II

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

11 / 37

Sum-Product Computation over Semirings, II

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

11 / 37

Sum-Product Computation over Semirings, II

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

11 / 37

Provenance Polynomial, I

The provenance polynomial for a full CQ Q is parameterized by an
underlying semiring S, a hypergraph H, and an instance I :

pQI :=
⊕

t∈Q(I)

⊗
e∈E

xet[e]

where xet[e] is a variable that captures the value of the tuple

t[e] ∈ Re in the semiring domain D [GKT07].

When we work over the counting semiring, the provenance
polynomial becomes a polynomial:

pHI :=
∑

t∈Q(I)

∏
e∈E

xet[e]

12 / 37

Provenance Polynomial, I

The provenance polynomial for a full CQ Q is parameterized by an
underlying semiring S, a hypergraph H, and an instance I :

pQI :=
⊕

t∈Q(I)

⊗
e∈E

xet[e]

where xet[e] is a variable that captures the value of the tuple

t[e] ∈ Re in the semiring domain D [GKT07].

When we work over the counting semiring, the provenance
polynomial becomes a polynomial:

pHI :=
∑

t∈Q(I)

∏
e∈E

xet[e]

12 / 37

Provenance Polynomial, I

The provenance polynomial for a full CQ Q is parameterized by an
underlying semiring S, a hypergraph H, and an instance I :

pQI :=
⊕

t∈Q(I)

⊗
e∈E

xet[e]

where xet[e] is a variable that captures the value of the tuple

t[e] ∈ Re in the semiring domain D [GKT07].

When we work over the counting semiring, the provenance
polynomial becomes a polynomial:

pHI :=
∑

t∈Q(I)

∏
e∈E

xet[e]

12 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}

S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}

T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}

U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

13 / 37

Tree Decomposition

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T)→ 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

Two tree decompositions for x1

x2 x3

x4 are

x1 x2 x3

x1 x3 x4

x1 x2 x4

x2 x3 x4

14 / 37

Tree Decomposition

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T)→ 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

Two tree decompositions for x1

x2 x3

x4 are

x1 x2 x3

x1 x3 x4

x1 x2 x4

x2 x3 x4

14 / 37

Tree Decomposition

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T)→ 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

Two tree decompositions for x1

x2 x3

x4 are

x1 x2 x3

x1 x3 x4

x1 x2 x4

x2 x3 x4

14 / 37

Tree Decomposition

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T)→ 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

Two tree decompositions for x1

x2 x3

x4 are

x1 x2 x3

x1 x3 x4

x1 x2 x4

x2 x3 x4

14 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T)}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].

15 / 37

Submodular Width

A function b : 2V(H) → R+is submodular if
b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ∀X ,Y ⊆ V (H).

Let F contain every edge-dominated monotone submodular
function b on V(H) with b(∅) = 0.

The submodular width of H is subw(H) := F-width(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any CSP(H) can be computed in time Õ(msubw(H)) .

Remark
This will be the benchmark for our conditional lower bound.

16 / 37

Submodular Width

A function b : 2V(H) → R+is submodular if
b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ∀X ,Y ⊆ V (H).

Let F contain every edge-dominated monotone submodular
function b on V(H) with b(∅) = 0.

The submodular width of H is subw(H) := F-width(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any CSP(H) can be computed in time Õ(msubw(H)) .

Remark
This will be the benchmark for our conditional lower bound.

16 / 37

Submodular Width

A function b : 2V(H) → R+is submodular if
b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ∀X ,Y ⊆ V (H).

Let F contain every edge-dominated monotone submodular
function b on V(H) with b(∅) = 0.

The submodular width of H is subw(H) := F-width(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any CSP(H) can be computed in time Õ(msubw(H)) .

Remark
This will be the benchmark for our conditional lower bound.

16 / 37

Submodular Width

A function b : 2V(H) → R+is submodular if
b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ∀X ,Y ⊆ V (H).

Let F contain every edge-dominated monotone submodular
function b on V(H) with b(∅) = 0.

The submodular width of H is subw(H) := F-width(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any CSP(H) can be computed in time Õ(msubw(H)) .

Remark
This will be the benchmark for our conditional lower bound.

16 / 37

Submodular Width

A function b : 2V(H) → R+is submodular if
b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ∀X ,Y ⊆ V (H).

Let F contain every edge-dominated monotone submodular
function b on V(H) with b(∅) = 0.

The submodular width of H is subw(H) := F-width(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any CSP(H) can be computed in time Õ(msubw(H)) .

Remark
This will be the benchmark for our conditional lower bound.

16 / 37

Submodular Width

A function b : 2V(H) → R+is submodular if
b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y) ∀X ,Y ⊆ V (H).

Let F contain every edge-dominated monotone submodular
function b on V(H) with b(∅) = 0.

The submodular width of H is subw(H) := F-width(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any CSP(H) can be computed in time Õ(msubw(H)) .

Remark
This will be the benchmark for our conditional lower bound.

16 / 37

Entropic Width

A function h : 2[n] → R+ is called a set function on [n].

A set function is entropic if there exist random variables
A1, . . . ,An such that h(S) = H((Ai)i∈S) for any S ⊆ [n], where H
is the joint entropy of a set of variables.

Let Γ∗n be the set of all entropic functions of order n, and Γ
∗
n the

topological closure of Γ∗n.

The entropic width of H is entw(H) := Γ
∗
n-width(H).

Remark
It remains open whether computing entw(H) is even decidable.

17 / 37

Entropic Width

A function h : 2[n] → R+ is called a set function on [n].

A set function is entropic if there exist random variables
A1, . . . ,An such that h(S) = H((Ai)i∈S) for any S ⊆ [n], where H
is the joint entropy of a set of variables.

Let Γ∗n be the set of all entropic functions of order n, and Γ
∗
n the

topological closure of Γ∗n.

The entropic width of H is entw(H) := Γ
∗
n-width(H).

Remark
It remains open whether computing entw(H) is even decidable.

17 / 37

Entropic Width

A function h : 2[n] → R+ is called a set function on [n].

A set function is entropic if there exist random variables
A1, . . . ,An such that h(S) = H((Ai)i∈S) for any S ⊆ [n], where H
is the joint entropy of a set of variables.

Let Γ∗n be the set of all entropic functions of order n, and Γ
∗
n the

topological closure of Γ∗n.

The entropic width of H is entw(H) := Γ
∗
n-width(H).

Remark
It remains open whether computing entw(H) is even decidable.

17 / 37

Entropic Width

A function h : 2[n] → R+ is called a set function on [n].

A set function is entropic if there exist random variables
A1, . . . ,An such that h(S) = H((Ai)i∈S) for any S ⊆ [n], where H
is the joint entropy of a set of variables.

Let Γ∗n be the set of all entropic functions of order n, and Γ
∗
n the

topological closure of Γ∗n.

The entropic width of H is entw(H) := Γ
∗
n-width(H).

Remark
It remains open whether computing entw(H) is even decidable.

17 / 37

Entropic Width

A function h : 2[n] → R+ is called a set function on [n].

A set function is entropic if there exist random variables
A1, . . . ,An such that h(S) = H((Ai)i∈S) for any S ⊆ [n], where H
is the joint entropy of a set of variables.

Let Γ∗n be the set of all entropic functions of order n, and Γ
∗
n the

topological closure of Γ∗n.

The entropic width of H is entw(H) := Γ
∗
n-width(H).

Remark
It remains open whether computing entw(H) is even decidable.

17 / 37

Entropic Width

A function h : 2[n] → R+ is called a set function on [n].

A set function is entropic if there exist random variables
A1, . . . ,An such that h(S) = H((Ai)i∈S) for any S ⊆ [n], where H
is the joint entropy of a set of variables.

Let Γ∗n be the set of all entropic functions of order n, and Γ
∗
n the

topological closure of Γ∗n.

The entropic width of H is entw(H) := Γ
∗
n-width(H).

Remark
It remains open whether computing entw(H) is even decidable.

17 / 37

Degree Aware Entropic Width, I

Let DC be a set of triples (X ,Y ,NY |X) for some X ⊂ Y ⊆ [n] and
NY |X ∈ N that encodes a set of degree constraints.

An instance I satisfies the constraints if |πY (Re ⋉ tX)| ≤ NY |X for
every relation Re in I with X ⊆ Y ⊆ e and every tuple tX .

Example

A constraint of the form (∅, e,Ne) is simply a cardinality constraint.

A constraint of the form (X ,Y , 1) is a Functional Dependency.

18 / 37

Degree Aware Entropic Width, I

Let DC be a set of triples (X ,Y ,NY |X) for some X ⊂ Y ⊆ [n] and
NY |X ∈ N that encodes a set of degree constraints.

An instance I satisfies the constraints if |πY (Re ⋉ tX)| ≤ NY |X for
every relation Re in I with X ⊆ Y ⊆ e and every tuple tX .

Example

A constraint of the form (∅, e,Ne) is simply a cardinality constraint.

A constraint of the form (X ,Y , 1) is a Functional Dependency.

18 / 37

Degree Aware Entropic Width, I

Let DC be a set of triples (X ,Y ,NY |X) for some X ⊂ Y ⊆ [n] and
NY |X ∈ N that encodes a set of degree constraints.

An instance I satisfies the constraints if |πY (Re ⋉ tX)| ≤ NY |X for
every relation Re in I with X ⊆ Y ⊆ e and every tuple tX .

Example

A constraint of the form (∅, e,Ne) is simply a cardinality constraint.

A constraint of the form (X ,Y , 1) is a Functional Dependency.

18 / 37

Degree Aware Entropic Width, I

Let DC be a set of triples (X ,Y ,NY |X) for some X ⊂ Y ⊆ [n] and
NY |X ∈ N that encodes a set of degree constraints.

An instance I satisfies the constraints if |πY (Re ⋉ tX)| ≤ NY |X for
every relation Re in I with X ⊆ Y ⊆ e and every tuple tX .

Example

A constraint of the form (∅, e,Ne) is simply a cardinality constraint.

A constraint of the form (X ,Y , 1) is a Functional Dependency.

18 / 37

Degree Aware Entropic Width, I

Let DC be a set of triples (X ,Y ,NY |X) for some X ⊂ Y ⊆ [n] and
NY |X ∈ N that encodes a set of degree constraints.

An instance I satisfies the constraints if |πY (Re ⋉ tX)| ≤ NY |X for
every relation Re in I with X ⊆ Y ⊆ e and every tuple tX .

Example

A constraint of the form (∅, e,Ne) is simply a cardinality constraint.

A constraint of the form (X ,Y , 1) is a Functional Dependency.

18 / 37

Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC :=

h : 2[n] → R+ |
∧

(X ,Y ,NY |X)∈DC

h(Y |X) ≤ logNY |X


where h(Y |X) := h(Y)− h(X) [KNS17].

The degree-aware entropic width of H is

da-entw(H,HDC) := (Γ
∗
n ∩ HDC)-width(H).

Remark
This will be the benchmark for our unconditional lower bound.

19 / 37

Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC :=

h : 2[n] → R+ |
∧

(X ,Y ,NY |X)∈DC

h(Y |X) ≤ logNY |X


where h(Y |X) := h(Y)− h(X) [KNS17].

The degree-aware entropic width of H is

da-entw(H,HDC) := (Γ
∗
n ∩ HDC)-width(H).

Remark
This will be the benchmark for our unconditional lower bound.

19 / 37

Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC :=

h : 2[n] → R+ |
∧

(X ,Y ,NY |X)∈DC

h(Y |X) ≤ logNY |X


where h(Y |X) := h(Y)− h(X) [KNS17].

The degree-aware entropic width of H is

da-entw(H,HDC) := (Γ
∗
n ∩ HDC)-width(H).

Remark
This will be the benchmark for our unconditional lower bound.

19 / 37

Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC :=

h : 2[n] → R+ |
∧

(X ,Y ,NY |X)∈DC

h(Y |X) ≤ logNY |X


where h(Y |X) := h(Y)− h(X) [KNS17].

The degree-aware entropic width of H is

da-entw(H,HDC) := (Γ
∗
n ∩ HDC)-width(H).

Remark
This will be the benchmark for our unconditional lower bound.

19 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

19 / 37

Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

20 / 37

Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

20 / 37

Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

20 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

20 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5

1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

21 / 37

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

22 / 37

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

22 / 37

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

22 / 37

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

22 / 37

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

22 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

22 / 37

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Remark
In a very recent work, Bringmann and Gorbachev showed that
emb(H) is tight for all CSP(H) that admits sub-quadratic
algorithm [BG24].

In fact, it captures all H that admits sub-quadratic algorithm: If
CSP(H) admits a sub-quadratic algorithm, then emb(H) < 2, and
in that case there exists an O(|I |emb(H)) algorithm.

23 / 37

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Remark
In a very recent work, Bringmann and Gorbachev showed that
emb(H) is tight for all CSP(H) that admits sub-quadratic
algorithm [BG24].

In fact, it captures all H that admits sub-quadratic algorithm: If
CSP(H) admits a sub-quadratic algorithm, then emb(H) < 2, and
in that case there exists an O(|I |emb(H)) algorithm.

23 / 37

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Remark
In a very recent work, Bringmann and Gorbachev showed that
emb(H) is tight for all CSP(H) that admits sub-quadratic
algorithm [BG24].

In fact, it captures all H that admits sub-quadratic algorithm: If
CSP(H) admits a sub-quadratic algorithm, then emb(H) < 2, and
in that case there exists an O(|I |emb(H)) algorithm.

23 / 37

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Remark
In a very recent work, Bringmann and Gorbachev showed that
emb(H) is tight for all CSP(H) that admits sub-quadratic
algorithm [BG24].

In fact, it captures all H that admits sub-quadratic algorithm: If
CSP(H) admits a sub-quadratic algorithm, then emb(H) < 2, and
in that case there exists an O(|I |emb(H)) algorithm.

23 / 37

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} to a unique hyperedge according to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

24 / 37

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} to a unique hyperedge according to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

24 / 37

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} to a unique hyperedge according to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

24 / 37

Examples

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 17/9 2

Qhb 7/4 2

Table: Clique embedding power and submodular width for some classes of
queries

Remark
Bringmann and Gorbachev showed Ω(m2) lower bound for both Qb

and Qhb through MinConv conjecture [BG24].

25 / 37

Examples

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 17/9 2

Qhb 7/4 2

Table: Clique embedding power and submodular width for some classes of
queries

Remark
Bringmann and Gorbachev showed Ω(m2) lower bound for both Qb

and Qhb through MinConv conjecture [BG24].

25 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

25 / 37

Circuits over Semirings

Recall our provenance polynomial pQI =
⊕

t∈Q(I)

⊗
e∈E x

e
t[e].

A circuit F over a semiring S is a Directed Acyclic Graph (DAG)
with input nodes variables in a set Sx containing xet[e]’s and the
constants 0, 1. Every other node is labelled by ⊕ or ⊗ and has
fan-in 2; these nodes are called ⊕-gates and ⊗-gates, respectively.

A circuit F is said to compute a polynomial p if F and p coincide
as functions (interpreted over the semiring S), and is said to
produce a polynomial p if F and p have exactly the same terms,
i.e. monomials with their coefficients, syntactically.

26 / 37

Circuits over Semirings

Recall our provenance polynomial pQI =
⊕

t∈Q(I)

⊗
e∈E x

e
t[e].

A circuit F over a semiring S is a Directed Acyclic Graph (DAG)
with input nodes variables in a set Sx containing xet[e]’s and the
constants 0, 1. Every other node is labelled by ⊕ or ⊗ and has
fan-in 2; these nodes are called ⊕-gates and ⊗-gates, respectively.

A circuit F is said to compute a polynomial p if F and p coincide
as functions (interpreted over the semiring S), and is said to
produce a polynomial p if F and p have exactly the same terms,
i.e. monomials with their coefficients, syntactically.

26 / 37

Circuits over Semirings

Recall our provenance polynomial pQI =
⊕

t∈Q(I)

⊗
e∈E x

e
t[e].

A circuit F over a semiring S is a Directed Acyclic Graph (DAG)
with input nodes variables in a set Sx containing xet[e]’s and the
constants 0, 1. Every other node is labelled by ⊕ or ⊗ and has
fan-in 2; these nodes are called ⊕-gates and ⊗-gates, respectively.

A circuit F is said to compute a polynomial p if F and p coincide
as functions (interpreted over the semiring S), and is said to
produce a polynomial p if F and p have exactly the same terms,
i.e. monomials with their coefficients, syntactically.

26 / 37

Example

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

⊕

⊗ ⊗

⊕ ⊗

(a1, a2) (a2, a3)⊗ ⊗

(a1, a4) (a3, a4) (a1, b4) (a3, b4)

⊗ ⊗

(c1, c2)(c1, c4) (c2, d3) (d3, c4)

27 / 37

Example

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

⊕

⊗ ⊗

⊕ ⊗

(a1, a2) (a2, a3)⊗ ⊗

(a1, a4) (a3, a4) (a1, b4) (a3, b4)

⊗ ⊗

(c1, c2)(c1, c4) (c2, d3) (d3, c4)

27 / 37

Motivation

1. Circuits can be seen as a computational model that
corresponds to algorithms that solely exploit the algebraic
semiring structure [Juk15].

2. Circuits that compute the provenance polynomial of a CQ can
be viewed as a concise representation of the corresponding
provenance polynomial interpreted over the given
semiring [OZ15, GKT07].

28 / 37

Motivation

1. Circuits can be seen as a computational model that
corresponds to algorithms that solely exploit the algebraic
semiring structure [Juk15].

2. Circuits that compute the provenance polynomial of a CQ can
be viewed as a concise representation of the corresponding
provenance polynomial interpreted over the given
semiring [OZ15, GKT07].

28 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

28 / 37

Main Results

Theorem (F., Koutris & Zhao, 24’)

For any ϵ > 0 and any hypergraph H, there exists an instance I and
k > 0 that satisfies the constraints HDC× k such that any circuit
F that computes the polynomial pHI over {Blin,T,C} has size

log |F | ≥ (1− ϵ) · da-entw(H,HDC× k).

Theorem (F., Koutris & Zhao, 24’)

Let I be any instance that satisfies the degree constraint DC.
There exists a multilinear and homogeneous circuit F of size
O(2da-entw(H,HDC)) that produces the polynomial pHI over any
idempotent semiring.

29 / 37

Main Results

Theorem (F., Koutris & Zhao, 24’)

For any ϵ > 0 and any hypergraph H, there exists an instance I and
k > 0 that satisfies the constraints HDC× k such that any circuit
F that computes the polynomial pHI over {Blin,T,C} has size

log |F | ≥ (1− ϵ) · da-entw(H,HDC× k).

Theorem (F., Koutris & Zhao, 24’)

Let I be any instance that satisfies the degree constraint DC.
There exists a multilinear and homogeneous circuit F of size
O(2da-entw(H,HDC)) that produces the polynomial pHI over any
idempotent semiring.

29 / 37

Main Results

Theorem (F., Koutris & Zhao, 24’)

For any ϵ > 0 and any hypergraph H, there exists an instance I and
k > 0 that satisfies the constraints HDC× k such that any circuit
F that computes the polynomial pHI over {Blin,T,C} has size

log |F | ≥ (1− ϵ) · da-entw(H,HDC× k).

Theorem (F., Koutris & Zhao, 24’)

Let I be any instance that satisfies the degree constraint DC.
There exists a multilinear and homogeneous circuit F of size
O(2da-entw(H,HDC)) that produces the polynomial pHI over any
idempotent semiring.

29 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

29 / 37

Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ⊗-gate is in pt, include all of its children in F as its
children in pt.

3. If a ⊕-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark
This notion has been extensively used to prove circuit lower
bound [JS82, AI03].

30 / 37

Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ⊗-gate is in pt, include all of its children in F as its
children in pt.

3. If a ⊕-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark
This notion has been extensively used to prove circuit lower
bound [JS82, AI03].

30 / 37

Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ⊗-gate is in pt, include all of its children in F as its
children in pt.

3. If a ⊕-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark
This notion has been extensively used to prove circuit lower
bound [JS82, AI03].

30 / 37

Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ⊗-gate is in pt, include all of its children in F as its
children in pt.

3. If a ⊕-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark
This notion has been extensively used to prove circuit lower
bound [JS82, AI03].

30 / 37

Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ⊗-gate is in pt, include all of its children in F as its
children in pt.

3. If a ⊕-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark
This notion has been extensively used to prove circuit lower
bound [JS82, AI03].

30 / 37

Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ⊗-gate is in pt, include all of its children in F as its
children in pt.

3. If a ⊕-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark
This notion has been extensively used to prove circuit lower
bound [JS82, AI03].

30 / 37

TD from a Parse Tree

For a monomial q in pHI , we define a structure Tq = (T , χ)
inductively in a bottom-up fashion from its parse tree:

1. For an input gate g of the variable xet[e], add a node vg in T
with χ(vg) = e. The input gate g is said to be associated to
the node vg .

2. For a ⊕-gate g , associate g to the node that is associated to
g ’s single child in the parse tree.

3. For a ⊗-gate g , let g1 and g2 be its children. Let q1, q2 be
the monomials computed at g1, g2 respectively; and Bg be the
set of vertices v ∈ V(H) such that all hyperedges incident to
v appear either exclusively in q1 or exclusively in q2. We add
a node vg with χ(vg) = (χ(vg1) ∪ χ(vg2)) \ Bg as the parent
of vg1 and vg2 in T . We associate g with the new node vg .

31 / 37

Key Lemmas

Lemma
For any monomial q in pHI , the structure Tq = (T , χ) is a tree
decomposition of H.

Lemma
Let q1, q2 be two monomials in pHI and Tq1 = (T1, χ1),
Tq2 = (T2, χ2) be their corresponding tree decompositions. If the
parse trees of q1, q2 share a common ⊗-gate g, then
χ1(vg) = χ2(vg).

Remark
It is thus possible to assign a type tp(g) to each ⊗-gate g as
χ(vg) for some decomposition Tq = (T , χ) of a monomial q. In
other words, the circuit F yields a globally consistent type
assignment to each ⊗-gate in F .

32 / 37

Key Lemmas

Lemma
For any monomial q in pHI , the structure Tq = (T , χ) is a tree
decomposition of H.

Lemma
Let q1, q2 be two monomials in pHI and Tq1 = (T1, χ1),
Tq2 = (T2, χ2) be their corresponding tree decompositions. If the
parse trees of q1, q2 share a common ⊗-gate g, then
χ1(vg) = χ2(vg).

Remark
It is thus possible to assign a type tp(g) to each ⊗-gate g as
χ(vg) for some decomposition Tq = (T , χ) of a monomial q. In
other words, the circuit F yields a globally consistent type
assignment to each ⊗-gate in F .

32 / 37

Key Lemmas

Lemma
For any monomial q in pHI , the structure Tq = (T , χ) is a tree
decomposition of H.

Lemma
Let q1, q2 be two monomials in pHI and Tq1 = (T1, χ1),
Tq2 = (T2, χ2) be their corresponding tree decompositions. If the
parse trees of q1, q2 share a common ⊗-gate g, then
χ1(vg) = χ2(vg).

Remark
It is thus possible to assign a type tp(g) to each ⊗-gate g as
χ(vg) for some decomposition Tq = (T , χ) of a monomial q. In
other words, the circuit F yields a globally consistent type
assignment to each ⊗-gate in F .

32 / 37

Key Lemmas

Lemma
For any monomial q in pHI , the structure Tq = (T , χ) is a tree
decomposition of H.

Lemma
Let q1, q2 be two monomials in pHI and Tq1 = (T1, χ1),
Tq2 = (T2, χ2) be their corresponding tree decompositions. If the
parse trees of q1, q2 share a common ⊗-gate g, then
χ1(vg) = χ2(vg).

Remark
It is thus possible to assign a type tp(g) to each ⊗-gate g as
χ(vg) for some decomposition Tq = (T , χ) of a monomial q. In
other words, the circuit F yields a globally consistent type
assignment to each ⊗-gate in F .

32 / 37

Example

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

⊕

⊗13 ⊗24

⊕ ⊗123

(a1, a2) (a2, a3)⊗134 ⊗134

(a1, a4) (a3, a4) (a1, b4) (a3, b4)

⊗124 ⊗234

(c1, c2)(c1, c4) (c2, d3) (d3, c4)

33 / 37

Example

⊕
parse tree for (a1, a2, a3, a4)

⊗13

⊗123⊕

(a1, a2) (a2, a3)⊗134

(a1, a4) (a3, a4)

⊕
parse tree for (c1, c2, d3, c4)

⊗24

⊗124 ⊗234

(c1, c2) (c1, c4) (c2, d3) (d3, c4)

13

tree decomposition

134 123

14 34 12 23

24

tree decomposition

124 234

12 14 23 34

34 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

34 / 37

Limit of Clique Embedding Power

? Does Bringmann and Gorbachev’s characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

✓ For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

✗ There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GM09].

? What is the gap between the clique embedding power and
submodular width [Mar13]?

35 / 37

Limit of Clique Embedding Power

? Does Bringmann and Gorbachev’s characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

✓ For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

✗ There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GM09].

? What is the gap between the clique embedding power and
submodular width [Mar13]?

35 / 37

Limit of Clique Embedding Power

? Does Bringmann and Gorbachev’s characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

✓ For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

✗ There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GM09].

? What is the gap between the clique embedding power and
submodular width [Mar13]?

35 / 37

Limit of Clique Embedding Power

? Does Bringmann and Gorbachev’s characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

✓ For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

✗ There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GM09].

? What is the gap between the clique embedding power and
submodular width [Mar13]?

35 / 37

Circuit for CQ with self-joins

? Can we provide tight circuit lower bounds for CQ with
self-joins?

✓ Interesting connection to the notion of “minimal”
queries [CS23] and the characterization of query containment
parametrized by the underlying semiring [KRS12].

36 / 37

Circuit for CQ with self-joins

? Can we provide tight circuit lower bounds for CQ with
self-joins?

✓ Interesting connection to the notion of “minimal”
queries [CS23] and the characterization of query containment
parametrized by the underlying semiring [KRS12].

36 / 37

Circuit for Datalog

? Is the O(n3) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

✓ We have obtained some results on dichotomies of regular
language reachability (Ω(n3) v.s. O(n) circuit size).

? We are investigating the generalization of Bellman-Ford to
arbitrary linear Datalog programs to construct
logarithmic-depth circuit.

37 / 37

Circuit for Datalog

? Is the O(n3) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

✓ We have obtained some results on dichotomies of regular
language reachability (Ω(n3) v.s. O(n) circuit size).

? We are investigating the generalization of Bellman-Ford to
arbitrary linear Datalog programs to construct
logarithmic-depth circuit.

37 / 37

Circuit for Datalog

? Is the O(n3) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

✓ We have obtained some results on dichotomies of regular
language reachability (Ω(n3) v.s. O(n) circuit size).

? We are investigating the generalization of Bellman-Ford to
arbitrary linear Datalog programs to construct
logarithmic-depth circuit.

37 / 37

Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

37 / 37

Thank You!

References I

Albert Atserias, Martin Grohe, and Dániel Marx, Size bounds
and query plans for relational joins, SIAM J. Comput. 42
(2013), no. 4, 1737–1767.

Micah Adler and Neil Immerman, An n! lower bound on
formula size, ACM Trans. Comput. Log. 4 (2003), no. 3,
296–314.

Karl Bringmann and Egor Gorbachev, A fine-grained
classification of subquadratic patterns for subgraph listing and
friends, arXiv preprint arXiv:2404.04369 (2024).

Arturs Backurs and Piotr Indyk, Edit distance cannot be
computed in strongly subquadratic time (unless SETH is
false), SIAM J. Comput. 47 (2018), no. 3, 1087–1097.

Andrei A. Bulatov, The complexity of the counting constraint
satisfaction problem, J. ACM 60 (2013), no. 5, 34:1–34:41.

37 / 37

References II

, A dichotomy theorem for nonuniform CSPs, FOCS,
IEEE Computer Society, 2017, pp. 319–330.

Jin-Yi Cai and Xi Chen, Complexity of counting CSP with
complex weights, J. ACM 64 (2017), no. 3, 19:1–19:39.

Nofar Carmeli and Luc Segoufin, Conjunctive queries with
self-joins, towards a fine-grained enumeration complexity
analysis, PODS, ACM, 2023, pp. 277–289.

Martin E. Dyer and David Richerby, An effective dichotomy for
the counting constraint satisfaction problem, SIAM J.
Comput. 42 (2013), no. 3, 1245–1274.

Todd J. Green, Gregory Karvounarakis, and Val Tannen,
Provenance semirings, PODS, ACM, 2007, pp. 31–40.

37 / 37

References III

Martin Grohe and Dániel Marx, On tree width, bramble size,
and expansion, J. Comb. Theory, Ser. B 99 (2009), no. 1,
218–228.

Martin Grohe, The complexity of homomorphism and
constraint satisfaction problems seen from the other side, J.
ACM 54 (2007), no. 1, 1:1–1:24.

Mark Jerrum and Marc Snir, Some exact complexity results for
straight-line computations over semirings, J. ACM 29 (1982),
no. 3, 874–897.

Stasys Jukna, Lower bounds for tropical circuits and dynamic
programs, Theory Comput. Syst. 57 (2015), no. 1, 160–194.

37 / 37

References IV

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu, What
do shannon-type inequalities, submodular width, and
disjunctive datalog have to do with one another?, PODS,
ACM, 2017, pp. 429–444.

Egor V. Kostylev, Juan L. Reutter, and András Z. Salamon,
Classification of annotation semirings over query containment,
PODS, ACM, 2012, pp. 237–248.

Mauricio Karchmer and Avi Wigderson, Monotone circuits for
connectivity require super-logarithmic depth, SIAM J. Discret.
Math. 3 (1990), no. 2, 255–265.

Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan
Williams, Tight hardness for shortest cycles and paths in
sparse graphs, SODA, SIAM, 2018, pp. 1236–1252.

37 / 37

References V

Dániel Marx, Can you beat treewidth?, Theory Comput. 6
(2010), no. 1, 85–112.

, Tractable hypergraph properties for constraint
satisfaction and conjunctive queries, J. ACM 60 (2013), no. 6,
42:1–42:51.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra,
Worst-case optimal join algorithms, J. ACM 65 (2018), no. 3,
16:1–16:40.

Dan Olteanu and Jakub Závodný, Size bounds for factorised
representations of query results, ACM Trans. Database Syst.
40 (2015), no. 1, 2:1–2:44.

Mihalis Yannakakis, Algorithms for acyclic database schemes,
VLDB, IEEE Computer Society, 1981, pp. 82–94.

37 / 37

References VI

Dmitriy Zhuk, A proof of the CSP dichotomy conjecture, J.
ACM 67 (2020), no. 5, 30:1–30:78.

37 / 37

Sum-Product Computation over Semirings, III

Example

Given an n-by-n square matrix A = (aij)

Compute perf(A) :=
∨
σ∈Sn

n∧
i=1

ai ,σ(i) ⇒ P-time

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

37 / 37

Sum-Product Computation over Semirings, III

Example

Given an n-by-n square matrix A = (aij)

Compute perf(A) :=
∨
σ∈Sn

n∧
i=1

ai ,σ(i) ⇒ P-time

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

37 / 37

Sum-Product Computation over Semirings, III

Example

Given an n-by-n square matrix A = (aij)

Compute perf(A) :=
∨
σ∈Sn

n∧
i=1

ai ,σ(i) ⇒ P-time

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

37 / 37

Sum-Product Computation over Semirings, III

Example

Given an n-by-n square matrix A = (aij)

Compute perf(A) :=
∨
σ∈Sn

n∧
i=1

ai ,σ(i) ⇒ P-time

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

37 / 37

Sum-Product Computation over Semirings, III

Example

Given an n-by-n square matrix A = (aij)

Compute perf(A) :=
∨
σ∈Sn

n∧
i=1

ai ,σ(i) ⇒ P-time

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

37 / 37

Sum-Product Computation over Semirings, III

Example

Given an n-by-n square matrix A = (aij)

Compute perf(A) :=
∨
σ∈Sn

n∧
i=1

ai ,σ(i) ⇒ P-time

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

37 / 37

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

37 / 37

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

37 / 37

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

37 / 37

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

37 / 37

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

37 / 37

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

37 / 37

Fine-Grained Complexity

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k →∞).

37 / 37

Fine-Grained Complexity

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k →∞).

37 / 37

Fine-Grained Complexity

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k →∞).

37 / 37

Fine-Grained Complexity

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k →∞).

37 / 37

Fine-Grained Complexity

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k →∞).

37 / 37

Fine-Grained Complexity

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k →∞).

37 / 37

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

37 / 37

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

37 / 37

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

37 / 37

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

37 / 37

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

37 / 37

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

37 / 37

	Preliminaries
	Conjunctive Queries
	Sum-Product Computation
	Widths for CQs

	Conditional Lower Bound
	Fine-Grained Complexity
	Clique Embedding Power
	Main Results

	Unconditional Lower Bound
	Circuits over Semirings
	Main Results
	Parse Tree

	Future Work

