Lower Bounds for Sum-Product Queries

Austen Z. Fan

University of Wisconsin, Madison

Preliminary Exam

1/37



Introduction

Sum-Product Queries are ubiquitous in theory and practice:

2/37



Introduction

Sum-Product Queries are ubiquitous in theory and practice:
1. Constraint Satisfaction Problem (CSP)

2/37



Introduction

Sum-Product Queries are ubiquitous in theory and practice:
1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

2/37



Introduction

Sum-Product Queries are ubiquitous in theory and practice:
1. Constraint Satisfaction Problem (CSP)
2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

2/37



Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1.
2.
3.

Constraint Satisfaction Problem (CSP)
Query Evaluation in Relational Databases

Inference in Bayesian Networks and Probabilistic Graphical
Model

. Chain Matrix Multiplication

2/37



Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1.
2.
3.

Constraint Satisfaction Problem (CSP)
Query Evaluation in Relational Databases

Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

2/37



Introduction

Two ways to study Sum-Product Queries in theoretical literature:

3/37



Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations

3/37



Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations — Dichotomy Theorems

Decision CSP [Bull7, Zhu20] & #CSP [Bul13, DR13, CC17]

3/37



Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations — Dichotomy Theorems

Decision CSP [Bull7, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph

3/37



Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations — Dichotomy Theorems

Decision CSP [Bull7, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph — Class of queries

3/37



Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations — Dichotomy Theorems

Decision CSP [Bull7, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph — Class of queries
Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]

3/37



What is the exact lower bound for a
given Sum-Product Query?



We partially answer the above question:

5/37



We partially answer the above question:

1. Conditional lower bound via fine-grained complexity

5/37



We partially answer the above question:
1. Conditional lower bound via fine-grained complexity

2. Unconditional lower bound via monotone circuits

5/37



Outline

Preliminaries
Conditional Lower Bound
Unconditional Lower Bound

Future Work

5/37



Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

5/37



Preliminaries
Conjunctive Queries

5/37



Definition

6/37



Definition
A Conjunctive Query @ is an expression associated to a

hypergraph H = ([n],€) where [n] = {1,...,n} and some U C [n]:

Qxy) /\ Re(xe)

ee&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

6/37



Definition
A Conjunctive Query @ is an expression associated to a

hypergraph H = ([n],€) where [n] = {1,...,n} and some U C [n]:

Qxy) /\ Re(xe)

ee&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

It is called Boolean if U =) and full if U = [n].

6/37



Definition

A Conjunctive Query @ is an expression associated to a

hypergraph H = ([n],€) where [n] = {1,...,n} and some U C [n]:

Qxy) /\ Re(xe)

ee&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

It is called Boolean if U =) and full if U = [n].
Example

6/37



Definition
A Conjunctive Query @ is an expression associated to a
hypergraph H = ([n],€) where [n] = {1,...,n} and some U C [n]:
Qxy) /\ Re(xe)
ec&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

It is called Boolean if U =) and full if U = [n].
Example
Deciding a (colored) 4-cycle

6/37



Definition

A Conjunctive Query @ is an expression associated to a

hypergraph H = ([n],€) where [n] = {1,...,n} and some U C [n]:

Qxy) /\ Re(xe)

ee&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

It is called Boolean if U =) and full if U = [n].
Example
Deciding a (colored) 4-cycle

Q() + R(x1,x2),S(x2,x3), T(x3,x1), U(xa, x1)

6/37



Definition
A Conjunctive Query @ is an expression associated to a
hypergraph H = ([n],€) where [n] = {1,...,n} and some U C [n]:
Qxy) /\ Re(xe)
ec&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

It is called Boolean if U =) and full if U = [n].
Example
Deciding a (colored) 4-cycle

Q() + R(x1,x2),S(x2,x3), T(x3,x1), U(xa, x1)

Listing (colored) 4-cycles

6/37



Definition

A Conjunctive Query @ is an expression associated to a

hypergraph H = ([n],€) where [n] = {1,...,n} and some U C [n]:

Qxy) /\ Re(xe)

ee&

where each R, is a relation of arity |e|, the variables x, x2, ..., X,
take values in some discrete domain, and x. := (X;)jce-

It is called Boolean if U =) and full if U = [n].
Example
Deciding a (colored) 4-cycle

Q) < R(x1,x2), S(x2, x3), T(x3,xa), U(xa, x1)
Listing (colored) 4-cycles

Q(x1, X2, x3,Xa)  R(x1,x2), S(x2,x3), T(x3,xa), U(xa, x1)

6/37



Hypergraph

7/37



Hypergraph

For every (Boolean) CQ @, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

7/37



Hypergraph
For every (Boolean) CQ @, we associate a hypergraph H to it,

where the vertices are variables and the hyperedges are atoms.

Example

7/37



Hypergraph

For every (Boolean) CQ @, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example
Q() : =R(x1,x2), S(x2,x3), T(x3,xa), U(xa,x1)

7/37



Hypergraph

For every (Boolean) CQ @, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example
Q() : —R(X15X2)75(X27X3)a T(X37X4)7 U(X47X1)

X2 X3

X1 X4

7/37



Hypergraph

For every (Boolean) CQ @, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example
Q() : —R(X15X2)75(X27X3)a T(X37X4)7 U(X47X1)
X2 X3
X1 X4
Remark

7/37



Hypergraph

For every (Boolean) CQ @, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example
Q() : —R(X15X2)75(X27X3)a T(X37X4)7 U(X47X1)
X2 X3
X1 X4
Remark

We are implicitly considering CQ without self-join. We will come
back to this point for further work.

7/37



Preliminaries

Sum-Product Computation

7/37



Constraint Satisfaction Problem

8/37



Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

8/37



Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example

8/37



Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example
SAT: V the set of variables, D = {0,1}, C the set of clauses.

8/37



Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example
SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

8/37



Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example
SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

8/37



Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example
SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP ) v.s. fixing hypergraphs (P).

8/37



Semiring

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:

1. (D,®,0) and (D, ®,1) are commutative monoids,

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:
1. (D,®,0) and (D, ®,1) are commutative monoids,
2. ® is distributive over @,

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:

1. (D,®,0) and (D, ®,1) are commutative monoids,
2. ® is distributive over @,
3. 0 is an annihilator of ® in D.

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:

1. (D,®,0) and (D, ®,1) are commutative monoids,
2. ® is distributive over @,
3. 0 is an annihilator of ® in D.

Example

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:

1. (D,®,0) and (D, ®,1) are commutative monoids,
2. ® is distributive over @,
3. 0 is an annihilator of ® in D.

Example
B = ({FALSE, TRUE}, V, A, FALSE, TRUE)

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:

1. (D,®,0) and (D, ®,1) are commutative monoids,
2. ® is distributive over @,
3. 0 is an annihilator of ® in D.

Example

B = ({FALSE, TRUE}, V, A, FALSE, TRUE)
T = (NU{oo}, min, +, 00, 0)

9/37



Semiring

A (commutative) semiring is an algebraic structure
S=(D,®,®,0,1), where & and ® are the addition and
multiplication in S such that:

1. (D,®,0) and (D, ®,1) are commutative monoids,
2. ® is distributive over @,
3. 0 is an annihilator of ® in D.

Example

B = ({FALSE, TRUE}, V, A, FALSE, TRUE)
T = (N U {oo}, min, +,00,0)
C=(N,+,%,0,1)

9/37



Sum-Product Computation over Semirings, |

10/37



Sum-Product Computation over Semirings, |

q() . —Rl ()?1),/‘?2 ()_(‘2),...,Rn()_<‘n)

10/37



Sum-Product Computation over Semirings, |

q() . —Rl ()?1),/‘?2 (fz),...,Rn()?n)

ai= "\ AR ()

v:valuation i=1

10/37



Sum-Product Computation over Semirings, |

q() . —Rl ()?1),/‘_\)2 ()?2),...,Rn()?n)

n

ai= "\ AR ()
v:valuation i=1

n

al)= B QR(v(x)

v:valuation i=1

10/37



Sum-Product Computation over Semirings, |

q() . —Rl ()?1),/‘_\)2 ()?2),...,Rn()?n)

n

ai= "\ AR ()
v:valuation i=1

n

al)= B QR(v(x)

v:valuation i=1

Example

10/37



Sum-Product Computation over Semirings, |

q() . —Rl ()?1),/‘_\)2 ()?2),...,Rn()?n)

n

ai= "\ AR ()
v:valuation i=1

n

al)= B QR(v(x)

v:valuation i=1

Example
B <> set semantics

10/37



Sum-Product Computation over Semirings, |

q() . —Rl ()?1),/‘_\)2 ()?2),...,Rn()?n)

n

ai= "\ AR ()
v:valuation i=1

n

al)= B QR(v(x)

v:valuation i=1

Example
B <> set semantics
C < bag semantics

10/37



Sum-Product Computation over Semirings, |

q() . —Rl ()?1),/‘_\)2 ()?2),...,Rn()?n)

ai= "\ AR ()
v:valuation i=1

al)= B QR(v(x)

v:valuation i=1

Example

B < set semantics
C < bag semantics
T <+ optimization

10/37



Sum-Product Computation over Semirings, |l

11/37



Sum-Product Computation over Semirings, |l

Example

11/37



Sum-Product Computation over Semirings, |l

Example
Given an edge-weighted graph G = (V, weight)

11/37



Sum-Product Computation over Semirings, |l

Example
Given an edge-weighted graph G = (V, weight)
Compute \/ N\ weight({v,w}) <> Boolean k-clique

V'CV {v,w}eV’
[V'|=k

11/37



Sum-Product Computation over Semirings, |l

Example
Given an edge-weighted graph G = (V, weight)
Compute \/ N\ weight({v,w}) <> Boolean k-clique

V'CV {v,w}eV’
Ve

Compute min > weight({v, w}) <> Minimum k-clique

/
VY eV

11/37



Sum-Product Computation over Semirings, |l

Example
Given an edge-weighted graph G = (V, weight)

Compute \/ N\ weight({v,w}) <> Boolean k-clique
V'CV {v,w}eV’
|V |=k

Compute min > weight({v, w}) <> Minimum k-clique
v'icv {v,w}eVv’
|V’ |=k

Compute > [ weight({v,w}) <+ Counting k-clique

V'CV {v,w}eV’
Ve

11/37



Provenance Polynomial, |

12/37



Provenance Polynomial, |

The provenance polynomial for a full CQ @ is parameterized by an
underlying semiring S, a hypergraph H, and an instance /:

= D Qxig
teQ(l) ec€

where xf[e] is a variable that captures the value of the tuple
tle] € Re in the semiring domain D [GKTO7].

12/37



Provenance Polynomial, |

The provenance polynomial for a full CQ @ is parameterized by an
underlying semiring S, a hypergraph H, and an instance /:

P = D Qxig
teQ(l) ec€

where xf[e] is a variable that captures the value of the tuple
tle] € Re in the semiring domain D [GKTO7].

When we work over the counting semiring, the provenance
polynomial becomes a polynomial:

=2 1Ix

teQ(l) ec&

12/37



Provenance Polynomial, Il

Example

13/37



Provenance Polynomial, Il

Example

Q(x1,x2,x3,xa) : —R(x1,%2), S(x2,x3), T(x3,xa), U(xa, x1)

13/37



Provenance Polynomial, Il

Example

Q(x1,x2,x3,xa) : —R(x1,%2), S(x2,x3), T(x3,xa), U(xa, x1)
R(x1,x2) = {(a1, a2), (c1, @) }

13/37



Provenance Polynomial, Il
Example
Q(x1, X2, x3,xa) : —R(x1,x2), S(x2,x3), T(x3,%a), U(xa, x1)

R(x1,x2) = {(a1, a2), (c1, 2) }
S(x2, x3) = {(a2, a3), (2, d3) }

13/37



Provenance Polynomial, Il
Example

Q(Xl,XQ,X3,X4) R(Xl,Xg), S(XQ,X3), T(X3,X4), U(X4,X1)
R(lex ) {(31732)a(C17C2)}

5(x2,x3) = {(a2,a3), (2, &)}

T(X3’X4) - {( as, 34), (33’ b4)7 (d37 C4)}

13/37



Provenance Polynomial, Il

Example

Q(x1,x2,x3,xa) : —R(x1,x2), S(x2,x3), T(x3,xa), U(xa, x1)
R(x1,x2) = {(a1, a2), (c1, 2) }
S {(a2,23), (2, d3)}

a3, a4), (a3, bs), (d3, ca)}

{( ), (
{(as,a1), (bs, a1), (ca, c1)}

13/37



Provenance Polynomial, Il

Example

Q(Xl,XQ,X3,X4) —R(Xl,Xg), S(X27X3), T(X3,X4)7 U(X4,X1)
R(lex ) {(31732)a(C17C2)}

5(x2,x3) = {(a2,a3), (2, &)}

X

T(X3’ 4) = {(33734)’(33’b4) (d3,C4)}
U(xa,x1) = {(as, a1), (bs, a1), (ca, c1)}
( ),

1) ={(a1,a2, a3, a4), (a1, a2, a3, ba), (c1, 2, d3, ca) }

13/37



Provenance Polynomial, Il

Example

Q(Xl,XQ,X3,X4) —R(Xl,Xg) S(X27X3), T(X3,X4)7 U(X4,X1)
R(lex ) {(31732)a(C17C2)}

5(x2,x3) = {(a2,a3), (2, &)}

T(X3’X4) {(33734)’( as, ) (d3,C4)}
U(xa,x1) = {(as, a1), (bs, a1), (ca, c1)}
( ),

1) ={(a1,a2, a3, a4), (a1, a2, a3, ba), (c1, 2, d3, ca) }

P/Q :(Xal7a2 @ Xap,a3 & Xaz,as @ Xa4731)@
(Xay.ap ® Xap,a3 & Xaz,by @ Xb4,a1)@

(XCI:C2 @ Xep,dy & Xdbs,cq @ XC47<-‘1)

13/37



Preliminaries

Widths for CQs

13/37



Tree Decomposition

14/37



Tree Decomposition

A tree decomposition of H = (V, &) is a pair (T, x), where T is a
tree and x : V(T) — 2V, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V theset {t | v € x(t)} is a
non-empty connected sub-tree of 7.

14/37



Tree Decomposition

A tree decomposition of H = (V, &) is a pair (T, x), where T is a
tree and x : V(T) — 2V, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V theset {t | v € x(t)} is a
non-empty connected sub-tree of 7.

Example

14/37



Tree Decomposition

A tree decomposition of H = (V, &) is a pair (T, x), where T is a
tree and x : V(T) — 2V, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V theset {t | v € x(t)} is a
non-empty connected sub-tree of 7.

Example
X2 X3

X4

.. $%
Two tree decompositions for ! are

14/37



Widths for CQs

15/37



Widths for CQs

The f-width of a TD (7, x) is max{f(x(t)) | t € V(T)}.

15/37



Widths for CQs

The f-width of a TD (7, x) is max{f(x(t)) | t € V(T)}.
The f-width of a H is the minimum of f-widths of all its TDs.

15/37



Widths for CQs

The f-width of a TD (7, x) is max{f(x(t)) | t € V(T)}.
The f-width of a H is the minimum of f-widths of all its TDs.
The F-width of a H is sup{f-width(H) | f € F} [Marl3].

15/37



Widths for CQs

The f-width of a TD (7, x) is max{f(x(t)) | t € V(T)}.
The f-width of a H is the minimum of f-widths of all its TDs.
The F-width of a H is sup{f-width(H) | f € F} [Marl3].

Example

15/37



Widths for CQs

The f-width of a TD (7, x) is max{f(x(t)) | t € V(T)}.
The f-width of a H is the minimum of f-widths of all its TDs.
The F-width of a H is sup{f-width(H) | f € F} [Marl3].

Example
Let s(B) = |B| — 1. The treewidth of H is tw(H) := s-width(H).

15/37



Widths for CQs

The f-width of a TD (7, x) is max{f(x(t)) | t € V(T)}.
The f-width of a H is the minimum of f-widths of all its TDs.
The F-width of a H is sup{f-width(H) | f € F} [Marl3].

Example
Let s(B) = |B| — 1. The treewidth of H is tw(H) := s-width(H).
Let p*(H) =min >  ~(e) where y: E(H) — [0,1] is a

ec&(H)
fractional edge cover. The fractional hypertree width of H is
fhw(H) := p*-width(H).

15/37



Widths for CQs

The f-width of a TD (7, x) is max{f(x(t)) | t € V(T)}.
The f-width of a H is the minimum of f-widths of all its TDs.
The F-width of a H is sup{f-width(H) | f € F} [Marl3].

Example
Let s(B) = |B| — 1. The treewidth of H is tw(H) := s-width(H).
Let p*(H) =min >  ~(e) where y: E(H) — [0,1] is a

ec&(H)
fractional edge cover. The fractional hypertree width of H is
fhw(H) := p*-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(m(%))
running time for computing H [NPRR18].

15/37



Submodular Width

16 /37



Submodular Width

A function b : 2¥YH) — Rtis submodular if
b(X)+b(Y)>b(XNY)+bXUY)VX,Y C V(H).

16/37



Submodular Width

A function b : 2¥YH) — Rtis submodular if
b(X)+b(Y)>b(XNY)+bXUY)VX,Y C V(H).

Let F contain every edge-dominated monotone submodular
function b on V(#) with b(() = 0.

16/37



Submodular Width

A function b : 2¥YH) — Rtis submodular if
b(X)+b(Y)>b(XNY)+bXUY)VX,Y C V(H).

Let F contain every edge-dominated monotone submodular
function b on V(#) with b(() = 0.

The submodular width of H is subw(H) := F-width(#).

16/37



Submodular Width

A function b : 2¥YH) — Rtis submodular if
b(X)+b(Y)>b(XNY)+bXUY)VX,Y C V(H).

Let F contain every edge-dominated monotone submodular
function b on V(#) with b(() = 0.

The submodular width of H is subw(H) := F-width(#).

Theorem (Khamis, Ngo & Suciu, 16")
Any CSP(H) can be computed in time O(ms**¥(1)) .

16/37



Submodular Width

A function b : 2¥YH) — Rtis submodular if
b(X)+b(Y)>b(XNY)+bXUY)VX,Y C V(H).

Let F contain every edge-dominated monotone submodular
function b on V(#) with b(() = 0.

The submodular width of H is subw(H) := F-width(#).
Theorem (Khamis, Ngo & Suciu, 16")
Any CSP(H) can be computed in time O(ms**¥(1)) .

Remark
This will be the benchmark for our conditional lower bound.

16/37



Entropic Width

17/37



Entropic Width

A function h: 2l" — R is called a set function on [n].

17/37



Entropic Width

A function h: 2l" — R is called a set function on [n].

A set function is entropic if there exist random variables
A1, ..., An such that h(S) = H((Aj)ies) for any S C [n], where H
is the joint entropy of a set of variables.

17/37



Entropic Width

A function h: 2l" — R is called a set function on [n].

A set function is entropic if there exist random variables
A1, ..., An such that h(S) = H((Aj)ies) for any S C [n], where H
is the joint entropy of a set of variables.

Let ['* be the set of all entropic functions of order n, and T, the
topological closure of 7.

17/37



Entropic Width

A function h: 2l" — R is called a set function on [n].

A set function is entropic if there exist random variables
A1, ..., An such that h(S) = H((Aj)ies) for any S C [n], where H
is the joint entropy of a set of variables.

Let ['* be the set of all entropic functions of order n, and T, the
topological closure of 7.

The entropic width of H is entw(H) := T ,-width().

17/37



Entropic Width

A function h: 2l" — R is called a set function on [n].

A set function is entropic if there exist random variables
A1, ..., An such that h(S) = H((Aj)ies) for any S C [n], where H
is the joint entropy of a set of variables.

Let ['* be the set of all entropic functions of order n, and T, the
topological closure of 7.

The entropic width of H is entw(H) := T ,-width().

Remark
It remains open whether computing entw(#) is even decidable.

17/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation R in [ with X C Y C e and every tuple tx.

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation R in [ with X C Y C e and every tuple tx.

Example

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation Re in | with X C Y C e and every tuple tx.

Example
A constraint of the form (0, e, N) is simply a cardinality constraint.

18/37



Degree Aware Entropic Width, |

Let DC be a set of triples (X, Y, Ny|x) for some X C Y C [n] and
Ny x € N that encodes a set of degree constraints.

An instance / satisfies the constraints if |1y (Re X tx)| < Ny|x for
every relation Re in | with X C Y C e and every tuple tx.

Example
A constraint of the form (0, e, N) is simply a cardinality constraint.

A constraint of the form (X, Y, 1) is a Functional Dependency.

18/37



Degree Aware Entropic Width, Il

19/37



Degree Aware Entropic Width, Il

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC:=<{ h:2l S R | N h(Y|X) < log Nyx
(X,Y,Ny x)eDC

where h(Y|X) := h(Y) — h(X) [KNS17].

19/37



Degree Aware Entropic Width, Il

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC:=<{ h:2l S R | N h(Y|X) < log Nyx
(X,Y,Ny x)eDC

where h(Y|X) := h(Y) — h(X) [KNS17].

The degree-aware entropic width of H is

da-entw(H, HDC) := (T, N HDC)-width(#).

19/37



Degree Aware Entropic Width, Il

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC:=<{ h:2l S R | N h(Y|X) < log Nyx
(X,Y,Ny x)eDC

where h(Y|X) := h(Y) — h(X) [KNS17].

The degree-aware entropic width of H is

da-entw(H, HDC) := (T, N HDC)-width(#).

Remark
This will be the benchmark for our unconditional lower bound.

19/37



Conditional Lower Bound
Fine-Grained Complexity

19/37



Fine-Grained Conjectures

20/37



Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires n*=°(1) time on a Word RAM model.

20/37



Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires n*=°(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any randomized algorithm to find a k-clique of minimum total
edge weight requires n*=°() time on a Word RAM model.

20/37



Conditional Lower Bound

Clique Embedding Power

20/37



Clique Embedding Power, |

21/37



Clique Embedding Power, |
Definition (Touch)

We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thatenN X #QPand enY # 0.

21/37



Clique Embedding Power, |

Definition (Touch)
We say X, Y C V touch in H if either XN'Y # () or Je € £ such
thatenN X #QPand enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [Kk]
to a non-empty subset ¥)(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

21/37



Clique Embedding Power, |

Definition (Touch)
We say X, Y C V touch in H if either XN'Y # () or Je € £ such
thatenN X #QPand enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [Kk]
to a non-empty subset ¥)(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

21/37



Clique Embedding Power, |

Definition (Touch)
We say X, Y C V touch in H if either XN'Y # () or Je € £ such
thatenN X #QPand enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [Kk]
to a non-empty subset ¢)(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

1

A,

21/37



Clique Embedding Power, |

Definition (Touch)
We say X, Y C V touch in H if either XN'Y # () or Je € £ such
thatenN X #QPand enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [Kk]
to a non-empty subset ¢)(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

21/37



Clique Embedding Power, |

Definition (Touch)
We say X, Y C V touch in H if either XN'Y # () or Je € £ such
thatenN X #QPand enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [Kk]
to a non-empty subset ¢)(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example
2,3

1 1 2 1,2 3,4

2¢ *3 3 3 51 4,5

21/37



Clique Embedding Power, |

Definition (Touch)
We say X, Y C V touch in H if either XN'Y # () or Je € £ such
thatenN X #QPand enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [Kk]
to a non-empty subset ¢)(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

1

21/37



Clique Embedding Power, Il

22/37



Clique Embedding Power, Il

Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) = |{v € [k] | ¥(v)Ne # O}].
The weak edge depth of 1) wed (1)) := max dy(e).
e

22/37



Clique Embedding Power, Il

Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) = |{v € [k] | ¥(v)Ne # O}].
The weak edge depth of 1) wed (1)) := max dy(e).
e

Definition (Clique Embedding Power)
The k-clique embedding power is emby(H) := mwax ﬁ(’d))' The

clique embedding power is emb(H) := sup emby(H).
k>3

22/37



Clique Embedding Power, Il

Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) = |{v € [k] | ¥(v)Ne # O}].
The weak edge depth of 1) wed (1)) := max dy(e).
e

Definition (Clique Embedding Power)
The k-clique embedding power is emby(H) := mwax ﬁ(’tﬁ)' The

clique embedding power is emb(H) := sup emby(H).
k>3

Example

22/37



Clique Embedding Power, Il

Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) = |{v € [k] | ¥(v)Ne # O}].
The weak edge depth of 1) wed (1)) := max dy(e).
e

Definition (Clique Embedding Power)
The k-clique embedding power is emby(H) := mwax ﬁ(’d))' The

clique embedding power is emb(#) := sup emby(H).
k>3

Example

23
1 1 9 1,2Q3,4
2A3 33 51 45

22/37



Conditional Lower Bound

Main Results

22/37



Main Theorem

23/37



Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|/|*™2(*)=¢) unless the Combinatorial k-Clique
Conjecture is false.

23/37



Main Theorem

Theorem (F., Koutris & Zhao, 23')
For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|/|*™2(*)=¢) unless the Combinatorial k-Clique
Conjecture is false.

Remark

In a very recent work, Bringmann and Gorbachev showed that
emb(#) is tight for all CSP(#) that admits sub-quadratic
algorithm [BG24].

23/37



Main Theorem

Theorem (F., Koutris & Zhao, 23')
For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|/|*™2(*)=¢) unless the Combinatorial k-Clique
Conjecture is false.

Remark

In a very recent work, Bringmann and Gorbachev showed that
emb(#) is tight for all CSP(#) that admits sub-quadratic
algorithm [BG24].

In fact, it captures all H that admits sub-quadratic algorithm: If
CSP(H) admits a sub-quadratic algorithm, then emb(H) < 2, and
in that case there exists an O(|1|*™(*)) algorithm.

23/37



Semiring Oblivious Reduction

24/37



Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} to a unique hyperedge according to .

24/37



Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} to a unique hyperedge according to .
Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|/|*™*(*)=€) unless the Min
Weight k-Clique Conjecture is false.

24/37



Examples

Table: Clique embedding power and submodular width for some classes of

emb subw
Acyclic 1 1
Chordal|= =
l-cycle |2 —1/[¢/2]2 —1/[¢/2]
Koy 2—-1/¢ 2—-1/¢
K3z |2 2
Ay (t-1)/2 |(¢—-1)/2
Hek |0/k 0]k
Qp 17/9 2
Quy  [7/4 2

queries

25/37



Examples

Table: Clique embedding power and submodular width for some classes of

Remark

Bringmann and Gorbachev showed Q(m?) lower bound for both @

emb subw
Acyclic 1 1
Chordal|= =
l-cycle |2 —1/[¢/2]2 —1/[¢/2]
Koy 2—-1/¢ 2—-1/¢
K3z |2 2
Ay (t-1)/2 |(¢—-1)/2
Hek |0/k 0]k
Qp 17/9 2
Quy  [7/4 2

queries

and Qpp through MinConv conjecture [BG24].

25/37



Unconditional Lower Bound
Circuits over Semirings

25/37



Circuits over Semirings

Recall our provenance polynomial p,Q = @teQ(/) Rece xte[e]_

26/37



Circuits over Semirings

Recall our provenance polynomial p,Q = @teo(/) Rece Xf[e]_

A circuit F over a semiring S is a Directed Acyclic Graph (DAG)
with input nodes variables in a set S, containing xf[e]'s and the
constants 0,1. Every other node is labelled by @ or ® and has
fan-in 2; these nodes are called ®-gates and ®-gates, respectively.

26/37



Circuits over Semirings

Recall our provenance polynomial p,Q = @teo(/) Rece Xf[e]_

A circuit F over a semiring S is a Directed Acyclic Graph (DAG)
with input nodes variables in a set S, containing xte[e]'s and the
constants 0,1. Every other node is labelled by @ or ® and has
fan-in 2; these nodes are called ®-gates and ®-gates, respectively.

A circuit F is said to compute a polynomial p if F and p coincide
as functions (interpreted over the semiring S), and is said to
produce a polynomial p if F and p have exactly the same terms,
i.e. monomials with their coefficients, syntactically.

26/37



Example

Q _
P’ =(Xay,ay @ Xap,a3 @ Xag,a @ Xag,2 )P
(X31-32 @ Xag,a3 @ Xaz,by @ Xb4,c'f'1)EB

(Xcl,C2 & Xep,dy @ Xds,cp @ XC4,61)

27/37



Example

Q _
P’ =(Xay,ay @ Xap,a3 @ Xag,a @ Xag,2 )P

(Xay.a, ® Xa,a3 @ Xag,by @ Xb4,c'f'1)EB

(Xcl,C2 & Xep,dy @ Xds,cp @ XC4761)

Q(x1,x2,x3,xa) < R(x1,x2),S(x2,x3), T(x3,x1), U(xa, x1)

PN
\®

o RN
) & ®
VRN / N\ /\ / N\
& Q) (a1;a) (a2, a3) (c1, @2)(c1,ca) (c2,d3) (dz,ca)
/ N\ /

(a1,24) (a3, 24) (a1, ba) (a3, b4)

27/37



Motivation

1. Circuits can be seen as a computational model that
corresponds to algorithms that solely exploit the algebraic
semiring structure [Juk15].

28/37



Motivation

1. Circuits can be seen as a computational model that
corresponds to algorithms that solely exploit the algebraic
semiring structure [Juk15].

2. Circuits that compute the provenance polynomial of a CQ can
be viewed as a concise representation of the corresponding
provenance polynomial interpreted over the given
semiring [0Z15, GKTO07].

28/37



Unconditional Lower Bound

Main Results

28/37



Main Results

29/37



Main Results

Theorem (F., Koutris & Zhao, 24")

For any e > 0 and any hypergraph H, there exists an instance | and
k > 0 that satisfies the constraints HDC x k such that any circuit
F that computes the polynomial p?{ over {Byin, T,C} has size

log|F| > (1 —¢€) - da-entw(H,HDC x k).

29/37



Main Results

Theorem (F., Koutris & Zhao, 24")

For any e > 0 and any hypergraph H, there exists an instance | and
k > 0 that satisfies the constraints HDC x k such that any circuit
F that computes the polynomial p?{ over {Byin, T,C} has size

log|F| > (1 —¢€) - da-entw(H,HDC x k).

Theorem (F., Koutris & Zhao, 24")

Let | be any instance that satisfies the degree constraint DC.
There exists a multilinear and homogeneous circuit F of size

O(292-ent(1HDC)) that produces the polynomial p]t over any
idempotent semiring.

29/37



Unconditional Lower Bound

Parse Tree

29/37



Parse Tree

30/37



Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

30/37



Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

30/37



Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ®-gate is in pt, include all of its children in F as its
children in pt.

30/37



Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ®-gate is in pt, include all of its children in F as its
children in pt.

3. If a d-gate is in pt, include exactly one of its children in F as
its children in pt.

30/37



Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ®-gate is in pt, include all of its children in F as its
children in pt.

3. If a d-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark

This notion has been extensively used to prove circuit lower
bound [J582, Al03].

30/37



TD from a Parse Tree

For a monomial g in p]*, we define a structure T4 = (T, X)
inductively in a bottom-up fashion from its parse tree:

1. For an input gate g of the variable xf[e], add a node v in T
with x(vg) = e. The input gate g is said to be associated to
the node vy,.

2. For a @-gate g, associate g to the node that is associated to
g's single child in the parse tree.

3. For a ®-gate g, let g1 and g» be its children. Let g1, g» be
the monomials computed at g1, g> respectively; and B, be the
set of vertices v € V(H) such that all hyperedges incident to
v appear either exclusively in g1 or exclusively in go. We add
a node vg with x(vg) = (x(vg) U x(Vg,)) \ Bg as the parent
of vg, and vg, in 7. We associate g with the new node v,.

31/37



Key Lemmas

32/37



Key Lemmas

Lemma
For any monomial q in pJt, the structure Ty = (T, x) is a tree
decomposition of H.

32/37



Key Lemmas

Lemma
For any monomial q in pJt, the structure Ty = (T, x) is a tree
decomposition of H.

Lemma

Let q1, g2 be two monomials in p]* and Tg, = (T1,x1),

Tq = (T2, x2) be their corresponding tree decompositions. If the
parse trees of q1, q» share a common ®-gate g, then

x1(ve) = x2(ve)-

32/37



Key Lemmas

Lemma
For any monomial q in pJt, the structure Ty = (T, x) is a tree
decomposition of H.

Lemma

Let q1, g2 be two monomials in p]* and Tg, = (T1,x1),

Tq = (T2, x2) be their corresponding tree decompositions. If the
parse trees of q1, q» share a common ®-gate g, then

x1(ve) = x2(ve)-

Remark

It is thus possible to assign a type tp(g) to each ®-gate g as
X(vg) for some decomposition T4 = (T, x) of a monomial q. In
other words, the circuit F yields a globally consistent type
assignment to each ®-gate in F.

32/37



Example

Q(X13X27X37X4) — R(X17X2)7 S(X27X3)7 T(X37X4)a U(X47X1)

13 ® 24 ®
©® 123 ® 124 ® 234 ®
RN / N\ 7\ / N\
134 ® 134 ® (a1,a2) (a2, a3) (a1, 2)(c1,ca) (c2,d3) (d3,ca)
/ N\ / N\

(a1,24) (a3, 24) (a1, bs) (a3, b4)

— ~

33/37



Example
parse tree for (a1, a2, as, as)

®
\
13 ®
PN
® 123 ®
\ / N\
134 ® (a1,22) (a2, a3)

/N

(a1,24) (a3,24)

|

tree decomposition

(13)

G
@ ® ©® 3

parse tree for (c1, ¢, d3, ca)

@
|
24 ®
N
124 ® 234 ®
/N /N

(c1,c2) (c1,ca) (c2,d3) (d3,ca)

|

tree decomposition

(24)

(2 G
®» B ® 6

34/37



Preliminaries

Conjunctive Queries

Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results
Unconditional Lower Bound
Circuits over Semirings
Main Results

Parse Tree

Future Work

«O>» «<Fr «E» <

Da
34/37



Limit of Clique Embedding Power

? Does Bringmann and Gorbachev's characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

35/37



Limit of Clique Embedding Power

? Does Bringmann and Gorbachev's characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

v For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

35/37



Limit of Clique Embedding Power

? Does Bringmann and Gorbachev's characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

v For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

X There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GMOQ9)].

35/37



Limit of Clique Embedding Power

? Does Bringmann and Gorbachev's characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

v For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

X There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GMOQ9)].

? What is the gap between the clique embedding power and
submodular width [Mar13]?

35/37



Circuit for CQ with self-joins

? Can we provide tight circuit lower bounds for CQ with
self-joins?

36/37



Circuit for CQ with self-joins

? Can we provide tight circuit lower bounds for CQ with
self-joins?

v Interesting connection to the notion of “minimal”
queries [CS23] and the characterization of query containment
parametrized by the underlying semiring [KRS12].

36/37



Circuit for Datalog

7 Is the O(n®) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

37/37



Circuit for Datalog

7 Is the O(n®) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

v/ We have obtained some results on dichotomies of regular
language reachability (Q(n®) v.s. O(n) circuit size).

37/37



Circuit for Datalog

7 Is the O(n®) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

v/ We have obtained some results on dichotomies of regular
language reachability (Q(n®) v.s. O(n) circuit size).

? We are investigating the generalization of Bellman-Ford to
arbitrary linear Datalog programs to construct
logarithmic-depth circuit.

37/37



Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

37/37



Thank You!



References |

[@ Albert Atserias, Martin Grohe, and Daniel Marx, Size bounds
and query plans for relational joins, SIAM J. Comput. 42
(2013), no. 4, 1737-1767.

[ Micah Adler and Neil Immerman, An n! lower bound on
formula size, ACM Trans. Comput. Log. 4 (2003), no. 3,
296-314.

[§ Karl Bringmann and Egor Gorbachev, A fine-grained
classification of subquadratic patterns for subgraph listing and
friends, arXiv preprint arXiv:2404.04369 (2024).

@ Arturs Backurs and Piotr Indyk, Edit distance cannot be
computed in strongly subquadratic time (unless SETH is
false), SIAM J. Comput. 47 (2018), no. 3, 1087-1097.

[@ Andrei A. Bulatov, The complexity of the counting constraint
satisfaction problem, J. ACM 60 (2013), no. 5, 34:1-34:41.

37/37



References |l

B

, A dichotomy theorem for nonuniform CSPs, FOCS,
IEEE Computer Society, 2017, pp. 319-330.

Jin-Yi Cai and Xi Chen, Complexity of counting CSP with
complex weights, J. ACM 64 (2017), no. 3, 19:1-19:39.

Nofar Carmeli and Luc Segoufin, Conjunctive queries with
self-joins, towards a fine-grained enumeration complexity
analysis, PODS, ACM, 2023, pp. 277-289.

Martin E. Dyer and David Richerby, An effective dichotomy for
the counting constraint satisfaction problem, SIAM J.
Comput. 42 (2013), no. 3, 1245-1274.

Todd J. Green, Gregory Karvounarakis, and Val Tannen,
Provenance semirings, PODS, ACM, 2007, pp. 31-40.

37/37



References 1l

@ Martin Grohe and Daniel Marx, On tree width, bramble size,
and expansion, J. Comb. Theory, Ser. B 99 (2009), no. 1,
218-228.

[d Martin Grohe, The complexity of homomorphism and
constraint satisfaction problems seen from the other side, J.
ACM 54 (2007), no. 1, 1:1-1:24.

[ Mark Jerrum and Marc Snir, Some exact complexity results for
straight-line computations over semirings, J. ACM 29 (1982),
no. 3, 874-897.

[§ Stasys Jukna, Lower bounds for tropical circuits and dynamic
programs, Theory Comput. Syst. 57 (2015), no. 1, 160-194.

37/37



References IV

@ Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu, What
do shannon-type inequalities, submodular width, and
disjunctive datalog have to do with one another?, PODS,
ACM, 2017, pp. 429-444,

[§ Egor V. Kostylev, Juan L. Reutter, and Andras Z. Salamon,

Classification of annotation semirings over query containment,
PODS, ACM, 2012, pp. 237-248.

[8 Mauricio Karchmer and Avi Wigderson, Monotone circuits for
connectivity require super-logarithmic depth, SIAM J. Discret.
Math. 3 (1990), no. 2, 255-265.

[d Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan
Williams, Tight hardness for shortest cycles and paths in
sparse graphs, SODA, SIAM, 2018, pp. 1236-1252.

37/37



References V

E
B

Déniel Marx, Can you beat treewidth?, Theory Comput. 6
(2010), no. 1, 85-112.

, Tractable hypergraph properties for constraint
satisfaction and conjunctive queries, J. ACM 60 (2013), no. 6,
42:1-42:51.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra,
Worst-case optimal join algorithms, J. ACM 65 (2018), no. 3,
16:1-16:40.

Dan Olteanu and Jakub Zavodny, Size bounds for factorised

representations of query results, ACM Trans. Database Syst.
40 (2015), no. 1, 2:1-2:44.

Mihalis Yannakakis, Algorithms for acyclic database schemes,
VLDB, IEEE Computer Society, 1981, pp. 82-94.

37/37



References VI

[M Dmitriy Zhuk, A proof of the CSP dichotomy conjecture, J.
ACM 67 (2020), no. 5, 30:1-30:78.

37/37



Sum-Product Computation over Semirings, Il

37/37



Sum-Product Computation over Semirings, Il

Example

37/37



Sum-Product Computation over Semirings, Il

Example
Given an n-by-n square matrix A = (ajj)

37/37



Sum-Product Computation over Semirings, Il

Example
Given an n-by-n square matrix A = (ajj)

n
Compute perf(A) :== \/ A aj ) = P-time
O'ESn i=1

37/37



Sum-Product Computation over Semirings, Il

Example
Given an n-by-n square matrix A = (ajj)

n
Compute perf(A) :== \/ A aj ) = P-time
O'ESn i=1

n
Compute asgmt(A) := miSn > dio() = P-time
0E€Sn j—1

37/37



Sum-Product Computation over Semirings, Il

Example
Given an n-by-n square matrix A = (ajj)

n
Compute perf(A) :== \/ A aj ) = P-time

O'ESn i=1
n
Compute asgmt(A) := min > a; ,(;y = P-time
o€5n =1
n
Compute perm(A) := > [] aj(j) = #P-hard
c€S, i=1

37/37



Dichotomies

37/37



Dichotomies

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W([1] the following are equivalent:

37/37



Dichotomies

Theorem (Grohe, 03')
If C is a recursively enumerable class of hypergraphs with bounded

edge size, then assuming FPT # W([1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

37/37



Dichotomies

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W([1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.

37/37



Dichotomies

Theorem (Grohe, 03')
If C is a recursively enumerable class of hypergraphs with bounded

edge size, then assuming FPT # W([1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.
3. C has bounded treewidth.

37/37



Dichotomies

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W([1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.
3. C has bounded treewidth.

Theorem (Max, 13')

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is

fixed-parameter tractable if and only if C has bounded submodular
width.

37/37



Fine-Grained Complexity

37/37



Fine-Grained Complexity

“Hardness in easy problems”

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time O(n*~%) for some
constant § > 0, then the Strong Exponential Time Hypothesis is
wrong.

37/37



Fine-Grained Complexity
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time O(n*~%) for some
constant § > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2°(") time
and SETH says that k-SAT needs 2" for large k (when k — o).

37/37



Conjectures

37/37



Conjectures

ETH: 36 > 0 such that 3-SAT requires 2°" time.

37/37



Conjectures
ETH: 36 > 0 such that 3-SAT requires 2°" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 0219 time.

37/37



Conjectures

ETH: 36 > 0 such that 3-SAT requires 2°" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 0219 time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {—n* ..., n*} cannot be solved in O(n?*~¢) time for any € > 0.

37/37



Conjectures

ETH: 36 > 0 such that 3-SAT requires 2°" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 0219 time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {—n* ..., n*} cannot be solved in O(n?*~¢) time for any € > 0.

APSP: No randomized algorithm can solve APSP in O(n3~¢) time

for e > 0 on n node graphs with edge weights {—n¢, ..., n} and
no negative cycles for large enough c.

37/37



Conjectures

ETH: 36 > 0 such that 3-SAT requires 2°" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 0219 time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {—n* ..., n*} cannot be solved in O(n?*~¢) time for any € > 0.

APSP: No randomized algorithm can solve APSP in O(n3~¢) time

for e > 0 on n node graphs with edge weights {—n¢, ..., n} and
no negative cycles for large enough c.

37/37



	Preliminaries
	Conjunctive Queries
	Sum-Product Computation
	Widths for CQs

	Conditional Lower Bound
	Fine-Grained Complexity
	Clique Embedding Power
	Main Results

	Unconditional Lower Bound
	Circuits over Semirings
	Main Results
	Parse Tree

	Future Work

