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Introduction

Sum-Product Queries are ubiquitous in theory and practice:

1. Constraint Satisfaction Problem (CSP)

2. Query Evaluation in Relational Databases

3. Inference in Bayesian Networks and Probabilistic Graphical
Model

4. Chain Matrix Multiplication

5. . . .
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Introduction

Two ways to study Sum-Product Queries in theoretical literature:

1. Fixing the relations → Dichotomy Theorems

Decision CSP [Bul17, Zhu20] & #CSP [Bul13, DR13, CC17]

2. Fixing the induced hypergraph → Class of queries

Bounded arity [Gro07, Mar10] & Unbounded arity [Mar13]
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What is the exact lower bound for a
given Sum-Product Query?



We partially answer the above question:

1. Conditional lower bound via fine-grained complexity

2. Unconditional lower bound via monotone circuits
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Definition

A Conjunctive Query Q is an expression associated to a
hypergraph H = ([n], E) where [n] = {1, . . . , n} and some U ⊆ [n]:

Q(xU)←
∧
e∈E

Re(xe)

where each Re is a relation of arity |e|, the variables x1, x2, . . . , xn
take values in some discrete domain, and xe := (xi )i∈e .

It is called Boolean if U = ∅ and full if U = [n].

Example

Deciding a (colored) 4-cycle

Q()← R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

Listing (colored) 4-cycles

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
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Hypergraph

For every (Boolean) CQ Q, we associate a hypergraph H to it,
where the vertices are variables and the hyperedges are atoms.

Example

Q() : −R(x1, x2), S(x2, x3),T (x3, x4),U(x4, x1)

x1

x2 x3

x4

Remark
We are implicitly considering CQ without self-join. We will come
back to this point for further work.
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Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C ), where each
constraint is a relation on a subset of the variables.

Example

SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Remark
Fixing relations (NP) v.s. fixing hypergraphs (P).
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Semiring

A (commutative) semiring is an algebraic structure
S = (D,⊕,⊗, 0, 1), where ⊕ and ⊗ are the addition and
multiplication in S such that:

1. (D,⊕, 0) and (D,⊗, 1) are commutative monoids,

2. ⊗ is distributive over ⊕,
3. 0 is an annihilator of ⊗ in D.

Example

B = ({False, True},∨,∧,False,True)
T = (N ∪ {∞},min,+,∞, 0)
C = (N,+, ∗, 0, 1)
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Sum-Product Computation over Semirings, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I ) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i ))

q(I ) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i ))

Example

B↔ set semantics
C↔ bag semantics
T↔ optimization
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Sum-Product Computation over Semirings, II

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique
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Provenance Polynomial, I

The provenance polynomial for a full CQ Q is parameterized by an
underlying semiring S, a hypergraph H, and an instance I :

pQI :=
⊕

t∈Q(I )

⊗
e∈E

xet[e]

where xet[e] is a variable that captures the value of the tuple

t[e] ∈ Re in the semiring domain D [GKT07].

When we work over the counting semiring, the provenance
polynomial becomes a polynomial:

pHI :=
∑

t∈Q(I )

∏
e∈E

xet[e]
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Provenance Polynomial, II

Example

Q(x1, x2, x3, x4) : −R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)
R(x1, x2) = {(a1, a2), (c1, c2)}
S(x2, x3) = {(a2, a3), (c2, d3)}
T (x3, x4) = {(a3, a4), (a3, b4), (d3, c4)}
U(x4, x1) = {(a4, a1), (b4, a1), (c4, c1)}

Q(I ) = {(a1, a2, a3, a4), (a1, a2, a3, b4), (c1, c2, d3, c4)}

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

13 / 37
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Tree Decomposition

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T )→ 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T ) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

Two tree decompositions for x1

x2 x3

x4 are

x1 x2 x3

x1 x3 x4

x1 x2 x4

x2 x3 x4
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Widths for CQs

The f -width of a TD (T , χ) is max{f (χ(t)) | t ∈ V (T )}.

The f -width of a H is the minimum of f -widths of all its TDs.

The F-width of a H is sup{f -width(H) | f ∈ F} [Mar13].

Example

Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Let ρ∗(H) = min
γ

∑
e∈E(H)

γ(e) where γ : E(H)→ [0, 1] is a

fractional edge cover. The fractional hypertree width of H is
fhw(H) := ρ∗-width(H).

Remark
The famous Worst-Case Optimal Join achieves O(mfhw(H))
running time for computing H [NPRR18].
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Submodular Width

A function b : 2V(H) → R+is submodular if
b(X ) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) ∀X ,Y ⊆ V (H).

Let F contain every edge-dominated monotone submodular
function b on V(H) with b(∅) = 0.

The submodular width of H is subw(H) := F-width(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any CSP(H) can be computed in time Õ(msubw(H)) .

Remark
This will be the benchmark for our conditional lower bound.
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Entropic Width

A function h : 2[n] → R+ is called a set function on [n].

A set function is entropic if there exist random variables
A1, . . . ,An such that h(S) = H((Ai )i∈S) for any S ⊆ [n], where H
is the joint entropy of a set of variables.

Let Γ∗n be the set of all entropic functions of order n, and Γ
∗
n the

topological closure of Γ∗n.

The entropic width of H is entw(H) := Γ
∗
n-width(H).

Remark
It remains open whether computing entw(H) is even decidable.
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Degree Aware Entropic Width, I

Let DC be a set of triples (X ,Y ,NY |X ) for some X ⊂ Y ⊆ [n] and
NY |X ∈ N that encodes a set of degree constraints.

An instance I satisfies the constraints if |πY (Re ⋉ tX )| ≤ NY |X for
every relation Re in I with X ⊆ Y ⊆ e and every tuple tX .

Example

A constraint of the form (∅, e,Ne) is simply a cardinality constraint.

A constraint of the form (X ,Y , 1) is a Functional Dependency.
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Degree Aware Entropic Width, II

The degree constraints on an instance can be translated as
constraints on entropic functions as follows:

HDC :=

h : 2[n] → R+ |
∧

(X ,Y ,NY |X )∈DC

h(Y |X ) ≤ logNY |X


where h(Y |X ) := h(Y )− h(X ) [KNS17].

The degree-aware entropic width of H is

da-entw(H,HDC) := (Γ
∗
n ∩ HDC)-width(H).

Remark
This will be the benchmark for our unconditional lower bound.
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Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

20 / 37



Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

20 / 37



Fine-Grained Conjectures

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

20 / 37



Preliminaries
Conjunctive Queries
Sum-Product Computation
Widths for CQs

Conditional Lower Bound
Fine-Grained Complexity
Clique Embedding Power
Main Results

Unconditional Lower Bound
Circuits over Semirings
Main Results
Parse Tree

Future Work

20 / 37



Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6
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Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example
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Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Remark
In a very recent work, Bringmann and Gorbachev showed that
emb(H) is tight for all CSP(H) that admits sub-quadratic
algorithm [BG24].

In fact, it captures all H that admits sub-quadratic algorithm: If
CSP(H) admits a sub-quadratic algorithm, then emb(H) < 2, and
in that case there exists an O(|I |emb(H)) algorithm.
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Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} to a unique hyperedge according to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.
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Examples

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 17/9 2

Qhb 7/4 2

Table: Clique embedding power and submodular width for some classes of
queries

Remark
Bringmann and Gorbachev showed Ω(m2) lower bound for both Qb

and Qhb through MinConv conjecture [BG24].
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Circuits over Semirings

Recall our provenance polynomial pQI =
⊕

t∈Q(I )

⊗
e∈E x

e
t[e].

A circuit F over a semiring S is a Directed Acyclic Graph (DAG)
with input nodes variables in a set Sx containing xet[e]’s and the
constants 0, 1. Every other node is labelled by ⊕ or ⊗ and has
fan-in 2; these nodes are called ⊕-gates and ⊗-gates, respectively.

A circuit F is said to compute a polynomial p if F and p coincide
as functions (interpreted over the semiring S), and is said to
produce a polynomial p if F and p have exactly the same terms,
i.e. monomials with their coefficients, syntactically.
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Example

pQI =(xa1,a2 ⊗ xa2,a3 ⊗ xa3,a4 ⊗ xa4,a1)⊕
(xa1.a2 ⊗ xa2,a3 ⊗ xa3,b4 ⊗ xb4,a1)⊕
(xc1,c2 ⊗ xc2,d3 ⊗ xd3,c4 ⊗ xc4,c1)

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

⊕

⊗ ⊗

⊕ ⊗

(a1, a2) (a2, a3)⊗ ⊗

(a1, a4) (a3, a4) (a1, b4) (a3, b4)

⊗ ⊗

(c1, c2)(c1, c4) (c2, d3) (d3, c4)
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Motivation

1. Circuits can be seen as a computational model that
corresponds to algorithms that solely exploit the algebraic
semiring structure [Juk15].

2. Circuits that compute the provenance polynomial of a CQ can
be viewed as a concise representation of the corresponding
provenance polynomial interpreted over the given
semiring [OZ15, GKT07].
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Main Results

Theorem (F., Koutris & Zhao, 24’)

For any ϵ > 0 and any hypergraph H, there exists an instance I and
k > 0 that satisfies the constraints HDC× k such that any circuit
F that computes the polynomial pHI over {Blin,T,C} has size

log |F | ≥ (1− ϵ) · da-entw(H,HDC× k).

Theorem (F., Koutris & Zhao, 24’)

Let I be any instance that satisfies the degree constraint DC.
There exists a multilinear and homogeneous circuit F of size
O(2da-entw(H,HDC)) that produces the polynomial pHI over any
idempotent semiring.
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Parse Tree

A parse tree pt is a rooted tree in a circuit F defined inductively as
follows:

1. The root of pt is an output gate.

2. If a ⊗-gate is in pt, include all of its children in F as its
children in pt.

3. If a ⊕-gate is in pt, include exactly one of its children in F as
its children in pt.

Remark
This notion has been extensively used to prove circuit lower
bound [JS82, AI03].
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TD from a Parse Tree

For a monomial q in pHI , we define a structure Tq = (T , χ)
inductively in a bottom-up fashion from its parse tree:

1. For an input gate g of the variable xet[e], add a node vg in T
with χ(vg ) = e. The input gate g is said to be associated to
the node vg .

2. For a ⊕-gate g , associate g to the node that is associated to
g ’s single child in the parse tree.

3. For a ⊗-gate g , let g1 and g2 be its children. Let q1, q2 be
the monomials computed at g1, g2 respectively; and Bg be the
set of vertices v ∈ V(H) such that all hyperedges incident to
v appear either exclusively in q1 or exclusively in q2. We add
a node vg with χ(vg ) = (χ(vg1) ∪ χ(vg2)) \ Bg as the parent
of vg1 and vg2 in T . We associate g with the new node vg .
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Key Lemmas

Lemma
For any monomial q in pHI , the structure Tq = (T , χ) is a tree
decomposition of H.

Lemma
Let q1, q2 be two monomials in pHI and Tq1 = (T1, χ1),
Tq2 = (T2, χ2) be their corresponding tree decompositions. If the
parse trees of q1, q2 share a common ⊗-gate g , then
χ1(vg ) = χ2(vg ).

Remark
It is thus possible to assign a type tp(g) to each ⊗-gate g as
χ(vg ) for some decomposition Tq = (T , χ) of a monomial q. In
other words, the circuit F yields a globally consistent type
assignment to each ⊗-gate in F .
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Example

Q(x1, x2, x3, x4)← R(x1, x2),S(x2, x3),T (x3, x4),U(x4, x1)

⊕

⊗13 ⊗24

⊕ ⊗123

(a1, a2) (a2, a3)⊗134 ⊗134

(a1, a4) (a3, a4) (a1, b4) (a3, b4)

⊗124 ⊗234

(c1, c2)(c1, c4) (c2, d3) (d3, c4)
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Example

⊕
parse tree for (a1, a2, a3, a4)

⊗13

⊗123⊕

(a1, a2) (a2, a3)⊗134

(a1, a4) (a3, a4)

⊕
parse tree for (c1, c2, d3, c4)

⊗24

⊗124 ⊗234

(c1, c2) (c1, c4) (c2, d3) (d3, c4)

13

tree decomposition

134 123

14 34 12 23

24

tree decomposition

124 234

12 14 23 34
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Limit of Clique Embedding Power

? Does Bringmann and Gorbachev’s characterization of clique
embedding power for sub-quadratic queries extend [BG24]?

✓ For planar graphs, a variant of clique embedding power is only
constant factor away from tree width.

✗ There exists classes of graphs (e.g. expanders) where the gaps
between that variant of clique embedding power and the tree
widths are at least quadratic [GM09].

? What is the gap between the clique embedding power and
submodular width [Mar13]?
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Circuit for CQ with self-joins

? Can we provide tight circuit lower bounds for CQ with
self-joins?

✓ Interesting connection to the notion of “minimal”
queries [CS23] and the characterization of query containment
parametrized by the underlying semiring [KRS12].
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Circuit for Datalog

? Is the O(n3) size circuit for st-reachability given by
Floyd-Warshall or Bellman-Ford optimal [KW90]?

✓ We have obtained some results on dichotomies of regular
language reachability (Ω(n3) v.s. O(n) circuit size).

? We are investigating the generalization of Bellman-Ford to
arbitrary linear Datalog programs to construct
logarithmic-depth circuit.
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Thank You!
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Sum-Product Computation over Semirings, III

Example

Given an n-by-n square matrix A = (aij)

Compute perf(A) :=
∨
σ∈Sn

n∧
i=1

ai ,σ(i) ⇒ P-time

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard
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Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.
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Fine-Grained Complexity

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k →∞).
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Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...
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