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Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by NP*(*).
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Any full CQ q can be computed in time O(NP" (%)),

Example (Listing Triangles)
Call a vertex heavy if its degree > /N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

3
N -+ N many and they can be found in O(N - vN) = O(N2) time.
For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most

\2/—% = O(v/N) many heavy vertices. Construct the

O(v/N)-by-O(v/N) matrix and use matrix multiplication to find in
O((VN)3) = O(N2) time.
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Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := (r7n_7i>r<1) terrc/a(>7<_) p*(x(t)).
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constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance /
of CSP(H) in time f(H)(||/]|)°™M), where f is a computable
function.
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Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.
3. C has bounded treewidth.

Theorem (Max, 13')

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.
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v:valuation i=1

a)= P QRilv(x)

v:valuation i=1

Example

({TrUE, FALSE}, V, A) > set semantics
(N, +, %) <> bag semantics

([0, 1], +, ) <> probabilistic database
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Can be solved in O(n?) by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time O(n*~%) for some
constant 6 > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2°(") time
and SETH says that k-SAT needs 2" for large k (when k — c0).
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Vassilevska-Williams & Williams, 17")

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires n*=°() time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any randomized algorithm to find a k-clique of minimum total
edge weight requires n*=°() time on a Word RAM model.
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Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} C [k] to a unique hyperedge according
to .

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(#H) over tropical semiring cannot be computed via

any randomized algorithm in time O(|/|*™>(*)=¢) unless the Min
Weight k-Clique Conjecture is false.
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Summary

Table: Clique embedding power and submodular width for some classes of

emb subw
Acyclic |1 1
Chordal|= =
l-cycle |2 —1/[¢/2]2 —1/[¢/2]
Ko 2—-1/¢ 2—-1/¢
K3z |2 2
Ay (t—-1)/2 |(¢-1)/2
Hek |U/k 0]k
Qp 17/9 2
Qu [7/4 2

queries
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