The Fine-Grained Complexity of Boolean
Conjunctive Queries and Sum-Product Problems

Austen Z. Fan Paraschos Koutris Hangdong Zhao
University of Wisconsin, Madison

ICALP 2023

1/20

Outline

Boolean Conjunctive Queries
Sum-of-Product Computation
Fine-Grained Complexity

Our Work

1/20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

1/20

Boolean Conjunctive Queries
Preliminaries

1/20

Preliminaries, |

2/20

Preliminaries, |

A conjunctive query q is an expression of the form

q(xl,...,xk) : —Rl(yl),...,R,,()?,,).

2/20

Preliminaries, |

A conjunctive query q is an expression of the form

q(xl,...,xk) : —Rl(yl),...,R,,()?,,).

It is called Boolean if its head is empty.

2/20

Preliminaries, |

A conjunctive query q is an expression of the form

q(xl,...,xk) : —Rl(yl),...,R,,()?,,).

It is called Boolean if its head is empty.

Example

2/20

Preliminaries, |

A conjunctive query q is an expression of the form

q(xl,...,xk) : —Rl(yl),...,R,,()?,,).

It is called Boolean if its head is empty.

Example
Listing 3-cycles

2/20

Preliminaries, |

A conjunctive query q is an expression of the form

q(xl,...,xk) : —Rl(yl),...,R,,()?,,).

It is called Boolean if its head is empty.

Example
Listing 3-cycles

q(X’y7Z) : —R(X,y),S(y,Z), T(Z7X)

2/20

Preliminaries, |

A conjunctive query q is an expression of the form

q(xl,...,xk) : —Rl(yl),...,R,,()?,,).

It is called Boolean if its head is empty.

Example
Listing 3-cycles

q(X’y7Z) : —R(X,y),S(y,Z), T(Z7X)

Detecting (the existence of) a 3-cycle

2/20

Preliminaries, |

A conjunctive query q is an expression of the form

q(xl,...,xk) : —Rl(yl),...,R,,()?,,).

It is called Boolean if its head is empty.

Example
Listing 3-cycles

q(X’y7Z) : —R(X,y),S(y,Z), T(Z7X)

Detecting (the existence of) a 3-cycle

CI() : _R(va)’s()/vz)7 T(va)

2/20

Preliminaries, 1l

3/20

Preliminaries, |l

For every CQ g, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

3/20

Preliminaries, |l

For every CQ g, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

3/20

Preliminaries, |l

For every CQ g, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example
q() : —R(Xl,Xz),S(Xz,X3)7 T(X3aX1)

3/20

Preliminaries, |l

For every CQ g, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example
q() : —R(Xl,Xz),S(Xz,X3)7 T(X3aX1)

X1

X2 X3

3/20

Preliminaries, |l

For every CQ g, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

3/20

Preliminaries, |l

For every CQ g, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example
q() : —R(y1,21), S(y2, 22), T(y3, z3), U(y1, y2, ¥3), V(21, 22, z3)

3/20

Preliminaries, |l

For every CQ g, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : —R(y1,21), S(y2, 22), T(y3, z3), U(y1, y2, ¥3), V(21, 22, z3)

'

)

y1

y2

21

¥3

22

23

3/20

Boolean Conjunctive Queries

Algorithms

3/20

Yannakakis Algorithm

4/20

Yannakakis Algorithm

Definition (Join Tree)
A join tree for a CQ g is a tree 7 whose vertices are the atoms in
g such that, for any pair of atoms R, S, all variables common to R

and S occur on the unique path connecting R and S.

4/20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ g is a tree 7 whose vertices are the atoms in
g such that, for any pair of atoms R, S, all variables common to R
and S occur on the unique path connecting R and S.

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

4/20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ g is a tree 7 whose vertices are the atoms in
g such that, for any pair of atoms R, S, all variables common to R
and S occur on the unique path connecting R and S.

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

4/20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ g is a tree 7 whose vertices are the atoms in
g such that, for any pair of atoms R, S, all variables common to R
and S occur on the unique path connecting R and S.

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example
q() : —R(x1,x2), S(x2,x3), T(x3,x2), U(x3, X5)

4/20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ g is a tree 7 whose vertices are the atoms in
g such that, for any pair of atoms R, S, all variables common to R
and S occur on the unique path connecting R and S.

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example
q() : —R(x1,x2), S(x2,x3), T(x3,x2), U(x3, X5)

T
R S

4/20

Worst-Case Optimal Joins, |

5/20

Worst-Case Optimal Joins, |

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, &) is an
assignment from each hyperedge e € £ to a weight ue € R>q, such

that for any vertex v € V we have) wue > 1.
ecf:vee

5/20

Worst-Case Optimal Joins, |

Definition (Fractional Edge Cover)
A fractional edge cover of a hypergraph H = (V, &) is an
assignment from each hyperedge e € £ to a weight ue € R>q, such
that for any vertex v € V we have) wue > 1.

ec&:vee
Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge

cover of H, the output size of q is bounded by [] N.
eef

5/20

Worst-Case Optimal Joins, |

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, &) is an
assignment from each hyperedge e € £ to a weight ue € R>q, such
that for any vertex v € V we have) wue>1.

ecf:vee

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by NP*(*).

5/20

Worst-Case Optimal Joins, |

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, &) is an
assignment from each hyperedge e € £ to a weight ue € R>q, such

that for any vertex v € V we have) wue>1.
ec:vee

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by NP*(*).

Example

5/20

Worst-Case Optimal Joins, |

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, &) is an
assignment from each hyperedge e € £ to a weight ue € R>q, such

that for any vertex v € V we have) wue>1.
ec:vee

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by NP*(*).

Example
The minimum fractional edge cover number p* of ANis %

5/20

Worst-Case Optimal Joins, Il

6/20

Worst-Case Optimal Joins, Il

Theorem (Ngo, Porat, Ré & Rudra, 12")
Any full CQ q can be computed in time O(NP" (%)),

6/20

Worst-Case Optimal Joins, Il

Theorem (Ngo, Porat, Ré & Rudra, 12")
Any full CQ q can be computed in time O(NP" (%)),

Example (Listing Triangles)

6/20

Worst-Case Optimal Joins, Il

Theorem (Ngo, Porat, Ré & Rudra, 12")
Any full CQ q can be computed in time O(NP" (%)),

Example (Listing Triangles)
Call a vertex heavy if its degree > /N and light otherwise.

6/20

Worst-Case Optimal Joins, Il

Theorem (Ngo, Porat, Ré & Rudra, 12")
Any full CQ q can be computed in time O(NP" (%)),

Example (Listing Triangles)
Call a vertex heavy if its degree > /N and light otherwise.

Directed 2-paths with intermediate vertices being light:

6/20

Worst-Case Optimal Joins, Il

Theorem (Ngo, Porat, Ré & Rudra, 12")

Any full CQ q can be computed in time O(NP" (%)),
Example (Listing Triangles)

Call a vertex heavy if its degree > /N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N -v/N many and they can be found in O(N - v/N) = O(N%) time.
For each such path, check whether the endpoints are connected.

6/20

Worst-Case Optimal Joins, Il

Theorem (Ngo, Porat, Ré & Rudra, 12")
Any full CQ q can be computed in time O(NP" (%)),

Example (Listing Triangles)

Call a vertex heavy if its degree > /N and light otherwise.
Directed 2-paths with intermediate vertices being light: there are
N -v/N many and they can be found in O(N - v/N) = O(N%) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy:

6/20

Worst-Case Optimal Joins, Il

Theorem (Ngo, Porat, Ré & Rudra, 12")
Any full CQ q can be computed in time O(NP" (%)),

Example (Listing Triangles)
Call a vertex heavy if its degree > /N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

3
N -+ N many and they can be found in O(N - vN) = O(N2) time.
For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most

\2/—% = O(v/N) many heavy vertices. Construct the

O(v/N)-by-O(v/N) matrix and use matrix multiplication to find in
O((VN)3) = O(N2) time.

6/20

Fractional Hypertree Width

7/20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V,£) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V the set {t | v € x(t)} is a
non-empty connected sub-tree of T .

7/20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V,£) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V the set {t | v € x(t)} is a
non-empty connected sub-tree of T .

Example

7/20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V,£) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V the set {t | v € x(t)} is a
non-empty connected sub-tree of T .

Example

e
A tree decomposition for is

7/20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V,£) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V the set {t | v € x(t)} is a
non-empty connected sub-tree of T .

Example

e
A tree decomposition for is

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := (r7n_7i>r<1) terrc/a(%(_) p*(x(t)).

7/20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V,£) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V the set {t | v € x(t)} is a
non-empty connected sub-tree of T .

Example

e
A tree decomposition for is

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := (r7n_7i>r<1) terrc/a(%(_) p*(x(t)).

Example

7/20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V,£) is a pair (T, x), where T is a
tree and x : V(7)) — 2Y, such that (1) Ve € £ is a subset for
some x(t),t € V(T) and (2) Vv € V the set {t | v € x(t)} is a
non-empty connected sub-tree of T .

Example

e
A tree decomposition for is

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := (r7n_7i>r<1) terrc/a(>7<_) p*(x(t)).

Example
The fractional hypertree width of D is 2.

7/20

Proof-Assisted eNtropic Degree-Aware

8/20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2Y — R* is submodular if for any X, Y CV, we
have b(X) + b(Y) > b(XNY)+ b(XUY).

8/20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2Y — R* is submodular if for any X, Y CV, we
have b(X) + b(Y) > b(XNY)+ b(XUY).

Definition (Submodular Width)

The submodular width subw(?) := max min max_b(x(t)).
b (T.x) teV(T)

8/20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2Y — R* is submodular if for any X, Y CV, we
have b(X) + b(Y) > b(XNY)+ b(XUY).

Definition (Submodular Width)

The submodular width subw(?) := max min max_b(x(t)).
b (T.x) teV(T)

Lemma (Marx, 10')
For any hypergraph H, subw(H) < fhtw(H).

8/20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2Y — R* is submodular if for any X, Y CV, we
have b(X) + b(Y) > b(XNY)+ b(XUY).

Definition (Submodular Width)

The submodular width subw(?) := max min max_b(x(t)).
b (T.x) teV(T)

Lemma (Marx, 10')
For any hypergraph H, subw(H) < fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16")
Any BCQ q can be computed in time O(N="P(a)) .

8/20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2Y — R* is submodular if for any X, Y CV, we
have b(X) + b(Y) > b(XNY)+ b(XUY).

Definition (Submodular Width)

The submodular width subw(?) := max min max_b(x(t)).
b (T.x) teV(T)

Lemma (Marx, 10')
For any hypergraph H, subw(H) < fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16")
Any BCQ q can be computed in time O(N="P(a)) .

Example

8/20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2Y — R* is submodular if for any X, Y CV, we
have b(X) + b(Y) > b(XNY)+ b(XUY).

Definition (Submodular Width)

The submodular width subw(?) := max min max_b(x(t)).
b (T.x) teV(T)

Lemma (Marx, 10')
For any hypergraph H, subw(H) < fhtw(#).

Theorem (Khamis, Ngo & Suciu, 16")
Any BCQ q can be computed in time O(N="P(a)) .

Example
The submodular width of D is %

8/20

Sum-of-Product Computation
BCQ as CSP

8/20

Constraint Satisfaction Problem

9/20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

9/20

Constraint Satisfaction Problem
A constraint satisfaction problem consists of (V, D, C), where each

constraint is a relation on a subset of the variables.

Example

9/20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example
3SAT: V the set of variables, D = {0,1}, C the set of clauses.

9/20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example
3SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

9/20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example
3SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

9/20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V, D, C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0,1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance /
of CSP(H) in time f(H)(||/]|)°™M), where f is a computable
function.

9/20

Dichotomies

10/20

Dichotomies

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W[1] the following are equivalent:

10/20

Dichotomies

Theorem (Grohe, 03')
If C is a recursively enumerable class of hypergraphs with bounded

edge size, then assuming FPT # W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

10/20

Dichotomies

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.

10/20

Dichotomies

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded

edge size, then assuming FPT # W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.
3. C has bounded treewidth.

10/20

Dichotomies

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT # W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.
2. CSP(C) is fixed-parameter tractable.
3. C has bounded treewidth.

Theorem (Max, 13')

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

10/20

Sum-of-Product Computation

Semiring framework

10/20

Semiring Framework, |

11/20

Semiring Framework, |

q() . —Rl ()?1),/'-\)2 ()?2),.. .,R,, ()?,,)

11/20

Semiring Framework, |

q() . —Rl ()?1),/‘-\)2 ()?2),.. .,R,, ()?n)

ah=\ ARv)

v:valuation i=1

11/20

Semiring Framework, |

q() . —Rl ()?1),/‘-\)2 ()?2),.. .,R,, ()?n)

n

a):="\ AR ()
v:valuation i=1

n

a)= P QRilv(x)

v:valuation i=1

11/20

Semiring Framework, |

q() . —Rl ()?1),/‘-\)2 ()?2),.. .,R,, ()?n)

n

ah=\ ARv)
v:valuation i=1
q):= B QRi(v(x)

v:valuation i=1

Example

11/20

Semiring Framework, |

q() . —Rl ()?1),/‘-\)2 ()?2),.. .,R,, ()?n)

n

a):="\ AR ()
v:valuation i=1

n

a)= P QRilv(x)

v:valuation i=1

Example
({TrUE, FALSE}, V, A) > set semantics

11/20

Semiring Framework, |

q() . —Rl ()?1),/‘-\)2 ()?2),.. .,R,, ()?n)

n

a):="\ AR ()
v:valuation i=1

n

a)= P QRilv(x)

v:valuation i=1
Example

({TrUE, FALSE}, V, A) > set semantics
(N, +, %) <> bag semantics

11/20

Semiring Framework, |

q() . —Rl ()?1),/‘-\)2 ()?2),.. .,R,, ()?n)

ah=\ ARv)
v:valuation i=1

a)= P QRilv(x)

v:valuation i=1

Example

({TrUE, FALSE}, V, A) > set semantics
(N, +, %) <> bag semantics

([0, 1], +,) <> probabilistic database

11/20

Semiring Framework, |l

12/20

Semiring Framework, |l

Example

12/20

Semiring Framework, Il

Example
Given an n-by-n square matrix A = (ajj)

12/20

Semiring Framework, |l

Example
Given an n-by-n square matrix A = (ajj)

Compute perm(A) := > [] aj () = #P-hard
O'ESn i=1

12/20

Semiring Framework, |l

Example
Given an n-by-n square matrix A = (ajj)

Compute perm(A) := > H aj o(i) = #P-hard

c€eS, i=1

Compute asgmt(A) := min Z aj o(jy = P-time

O'ESn,

12/20

Semiring Framework, |l

Example
Given an n-by-n square matrix A = (ajj)

Compute perm(A) := > H aj o(i) = #P-hard

c€eS, i=1

Compute asgmt(A) := min Z aj o(jy = P-time

O'ESn,

Example

12/20

Semiring Framework, |l

Example
Given an n-by-n square matrix A = (ajj)

Compute perm(A) := > H aj o(i) = #P-hard
c€eS, i=1

Compute asgmt(A) := min Z aj o(jy = P-time

O'ESn,

Example
Given an edge-weighted graph G = (V/, weight)

12/20

Semiring Framework, |l

Example
Given an n-by-n square matrix A = (ajj)
Compute perm(A) := > H aj o(i) = #P-hard

c€eS, i=1

Compute asgmt(A) := mlsn Z aj o(jy = P-time
OE€Sn j—
Example
Given an edge-weighted graph G = (V/, weight)
Compute \/ N\ weight({v,w}) <> Boolean k-clique

VICV {v,w}eV’
[V'|=k

12/20

Semiring Framework, |l

Example
Given an n-by-n square matrix A = (ajj)

Compute perm(A) := > H aj o(i) = #P-hard

c€eS, i=1

Compute asgmt(A) := min Z aj o(jy = P-time

O’ESn,

Example

Given an edge-weighted graph G = (V/, weight)

Compute \/ N\ weight({v,w}) <> Boolean k-clique
V'CV {v,w}eV’
|V'|=k

Compute > [T weight({v,w}) <> Counting k-clique

V'CV {v,w}eV’
|V'|=k

12/20

Semiring Framework, |l

Example
Given an n-by-n square matrix A = (ajj)

Compute perm(A) := > H aj o(i) = #P-hard

c€eS, i=1

Compute asgmt(A) := min Z aj o(jy = P-time

O’ESn,

Example
Given an edge-weighted graph G = (V/, weight)

Compute \/ N\ weight({v,w}) <> Boolean k-clique
VICV {v,wleV’
|V'|=k

Compute > [T weight({v,w}) <> Counting k-clique
V'CV {v,w}eV’
|V’ |=k

Compute min > weight({v,w}) <> Minimum k-clique

12/20

Fine-Grained Complexity

12/20

Fine-Grained Complexity in 5 Minutes...

13/20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

13/20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

13/20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

13/20

Fine-Grained Complexity in 5 Minutes...
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time O(n*~%) for some
constant 6 > 0, then the Strong Exponential Time Hypothesis is
wrong.

13/20

Fine-Grained Complexity in 5 Minutes...
“Hardness in easy problems”

The edit distance between two strings := min # insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n?) by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time O(n*~%) for some
constant 6 > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2°(") time
and SETH says that k-SAT needs 2" for large k (when k — c0).

13/20

Conjectures

14 /20

Conjectures

ETH: 35 > 0 such that 3-SAT requires 29" time.

14/20

Conjectures
ETH: 35 > 0 such that 3-SAT requires 29" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 029" time.

14/20

Conjectures

ETH: 35 > 0 such that 3-SAT requires 29" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 029" time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {—n* ..., n*} cannot be solved in O(n?>~¢) time for any € > 0.

14/20

Conjectures

ETH: 35 > 0 such that 3-SAT requires 29" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 029" time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {—n* ..., n*} cannot be solved in O(n?>~¢) time for any € > 0.

APSP: No randomized algorithm can solve APSP in O(n3~¢) time

for e > 0 on n node graphs with edge weights {—n¢,...,n°} and
no negative cycles for large enough c.

14/20

Conjectures

ETH: 35 > 0 such that 3-SAT requires 29" time.

SETH: Ve > 0, dk such that k-SAT on n variables cannot be solved
in 029" time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {—n* ..., n*} cannot be solved in O(n?>~¢) time for any € > 0.

APSP: No randomized algorithm can solve APSP in O(n3~¢) time

for e > 0 on n node graphs with edge weights {—n¢,...,n°} and
no negative cycles for large enough c.

14/20

Conjectures related to k-Clique

15/20

Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires n*=°() time on a Word RAM model.

15/20

Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires n*=°() time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17")

Any randomized algorithm to find a k-clique of minimum total
edge weight requires n*=°() time on a Word RAM model.

15/20

Our Work
Clique embedding power

15/20

Clique Embedding Power, |

16/20

Clique Embedding Power, |
Definition (Touch)

We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thateNn X £ and enY # 0.

16 /20

Clique Embedding Power, |

Definition (Touch)
We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thateNn X £ and enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [K]
to a non-empty subset ¢(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

16 /20

Clique Embedding Power, |

Definition (Touch)
We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thateNn X £ and enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [K]
to a non-empty subset ¢(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

16 /20

Clique Embedding Power, |

Definition (Touch)
We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thateNn X £ and enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [K]
to a non-empty subset ¢(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

1

A,

16 /20

Clique Embedding Power, |

Definition (Touch)
We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thateNn X £ and enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [K]
to a non-empty subset ¢(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

16 /20

Clique Embedding Power, |

Definition (Touch)
We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thateNn X £ and enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [K]
to a non-empty subset ¢(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example
2,3

1 1 2 1,2 3.4

2¢ *3 3 3 4,5 51

16 /20

Clique Embedding Power, |

Definition (Touch)
We say X, Y CV touch in H if either X N'Y # () or Je € £ such
thateNn X £ and enY # 0.

Definition (K-Clique Embedding)

A k-clique embedding from Cy to H is a mapping v from v € [K]
to a non-empty subset ¢(v) C V such that (1) Vv, (v) induces a
connected subhypergraph and (2) V{v, u}, ¥(v), ¥ (u) touch in H.

Example

16 /20

Clique Embedding Power, Il

17/20

Clique Embedding Power, Il
Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) := |{v € [k] | ¢(v)Ne # O}].
The weak edge depth of 1) wed (1)) := max dy(e).

17/20

Clique Embedding Power, Il

Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) := |{v € [k] | ¢(v)Ne # O}].
The weak edge depth of 1) wed(1)) := max dy(e).

Definition (Clique Embedding Power)
The k-clique embedding power is emby(H) := mfx Wecf(w) The

clique embedding power is emb(H) := sup emby(#).
k>3

17/20

Clique Embedding Power, Il

Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) := |{v € [k] | ¢(v)Ne # O}].
The weak edge depth of 1) wed(1)) := max dy(e).

Definition (Clique Embedding Power)
The k-clique embedding power is emby(H) := mfx Wecf(w) The

clique embedding power is emb(H) := sup emby(#).
k>3

Example

17/20

Clique Embedding Power, Il

Definition (Weak Edge Depth)

Ve the weak edge depth of e is dy(e) := |{v € [k] | ¢(v)Ne # O}].
The weak edge depth of 1) wed(1)) := max dy(e).

Definition (Clique Embedding Power)
The k-clique embedding power is emby(H) := mfx Weé‘(w). The

clique embedding power is emb(H) := sup emby(H).
k>3

Example

17/20

Our Work

Main results

17/20

Main Theorem

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.
2,3

1,2 3.4

51 4,5

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.
2,3 X1 X2
1,2/\3,4 (v, v3)[(v3,v3)
(v, v3)[(v3, v3)
51 45

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial

algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.
2,3 X1 X2 A X3
1,2 3,4 <V1) V25> <V257 V31> <V5 V1> <V1 V2>
(v, v3)[(v3, vg)| 2334
51 45

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

5>< 5 1> X2 X3
(v3,v)[(v3,v)

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.
X1 X2 x x
2 3
Wl e Ik)
2,3 <V17 2><V27V3>
1,2 3,4 X3 X4
(v3,vi)|(vi, ve)|| xa X5
(vi, vid (v, vl [(vi, v [(vs, vp)
51 4,5 <V3}7Vfl‘> (Vf,Vé)

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23")

For any H, CSP(#) cannot be computed via a combinatorial
algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.
all X2 X: X:
2 3
<V167 V25> <V25’ V?}> 2 V1> <V1 V2>
(v, vo)(v3, vg)| 23R8
2,3 X3 X4
1,2/\3 4 W v)[(vasva)|| xa | xs
(V?iv Vz%> <V£%> Vé) (VE, Vé) <Vé, V16>
<V37 Vé‘ll> <V447 Vé>
5,1 4,5 X5 X1
)

O

18/20

Main Theorem

Theorem (F., Koutris & Zhao, 23")

For any H, CSP(#) cannot be computed via a combinatorial
algorithm in time O(|1|*™P(*)=€) unless the Combinatorial k-Clique
Conjecture is false.

Proof.
X1 X2
<V16> V25> <Vér)> V3}> 5X2 T 1X3)
<Vf7 V25> <V257 V3}> 2, v5)|{v5,)
2,3 X3 X4
1,2/\3.4 v vl x| x
(v3, vi)l(vi, ve)|[(vi, va)[(vg, vP)
(vi, v)|(vi, vs)
5,1 4,5 X5 X1
(va, vD)|(vP, v3)

18/20

Semiring Oblivious Reduction

19/20

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} C [k] to a unique hyperedge according

to .

19/20

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} C [k] to a unique hyperedge according
to .

Theorem (F., Koutris & Zhao, 23')

For any H, CSP(#H) over tropical semiring cannot be computed via

any randomized algorithm in time O(|/|*™>(*)=¢) unless the Min
Weight k-Clique Conjecture is false.

19/20

Our Work

Tightness and gaps

19/20

Summary

Table: Clique embedding power and submodular width for some classes of

emb subw
Acyclic |1 1
Chordal|= =
l-cycle |2 —1/[¢/2]2 —1/[¢/2]
Ko 2—-1/¢ 2—-1/¢
K3z |2 2
Ay (t—-1)/2 |(¢-1)/2
Hek |U/k 0]k
Qp 17/9 2
Qu [7/4 2

queries

20/20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

20/20

Thank Youl

References |

@ Albert Atserias, Martin Grohe, and Déniel Marx, Size bounds
and query plans for relational joins, SIAM J. Comput. 42
(2013), no. 4, 1737-1767.

@ Arturs Backurs and Piotr Indyk, Edit distance cannot be
computed in strongly subquadratic time (unless SETH is
false), SIAM J. Comput. 47 (2018), no. 3, 1087-1097.

[§ Todd J. Green, Gregory Karvounarakis, and Val Tannen,
Provenance semirings, PODS, ACM, 2007, pp. 31-40.

[Martin Grohe, The complexity of homomorphism and
constraint satisfaction problems seen from the other side, J.
ACM 54 (2007), no. 1, 1:1-1:24.

20/20

References |l

[§ Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu, What
do shannon-type inequalities, submodular width, and
disjunctive datalog have to do with one another?, PODS,
ACM, 2017, pp. 429-444.

[d Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan
Williams, Tight hardness for shortest cycles and paths in
sparse graphs, SODA, SIAM, 2018, pp. 1236-1252.

[d Daniel Marx, Tractable hypergraph properties for constraint
satisfaction and conjunctive queries, J. ACM 60 (2013), no. 6,
42:1-42:51.

[§ Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra,
Worst-case optimal join algorithms, J. ACM 65 (2018), no. 3,
16:1-16:40.

20/20

References 1l

[§ Mihalis Yannakakis, Algorithms for acyclic database schemes,
VLDB, IEEE Computer Society, 1981, pp. 82-94.

20/20

	Boolean Conjunctive Queries
	Preliminaries
	Algorithms

	Sum-of-Product Computation
	BCQ as CSP
	Semiring framework

	Fine-Grained Complexity
	Our Work
	Clique embedding power
	Main results
	Tightness and gaps

