The Fine-Grained Complexity of Boolean Conjunctive Queries and Sum-Product Problems

Austen Z. Fan Paraschos Koutris Hangdong Zhao

University of Wisconsin, Madison

ICALP 2023

 $1/20$

Outline

[Boolean Conjunctive Queries](#page-3-0)

[Sum-of-Product Computation](#page-55-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0)

[Boolean Conjunctive Queries](#page-3-0)

[Preliminaries](#page-3-0) [Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0)

[BCQ as CSP](#page-55-0) [Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

[Boolean Conjunctive Queries](#page-3-0) [Preliminaries](#page-3-0)

[Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0) [BCQ as CSP](#page-55-0)

[Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

K ロ X x 何 X x モ X x モ X → 三 电 → の Q Q → $2/20$

A conjunctive query q is an expression of the form

$$
q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).
$$

A conjunctive query q is an expression of the form

$$
q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).
$$

It is called Boolean if its head is empty.

A conjunctive query q is an expression of the form

$$
q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).
$$

It is called Boolean if its head is empty.

A conjunctive query q is an expression of the form

$$
q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).
$$

It is called Boolean if its head is empty.

Example

Listing 3-cycles

A conjunctive query q is an expression of the form

$$
q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).
$$

It is called Boolean if its head is empty.

Example

Listing 3-cycles

$$
q(x,y,z): -R(x,y), S(y,z), T(z,x)
$$

A conjunctive query q is an expression of the form

$$
q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).
$$

It is called Boolean if its head is empty.

Example

Listing 3-cycles

$$
q(x,y,z): -R(x,y), S(y,z), T(z,x)
$$

Detecting (the existence of) a 3-cycle

A conjunctive query q is an expression of the form

$$
q(x_1,\ldots,x_k):-R_1(\vec{y}_1),\ldots,R_n(\vec{y}_n).
$$

It is called Boolean if its head is empty.

Example

Listing 3-cycles

$$
q(x,y,z): -R(x,y), S(y,z), T(z,x)
$$

Detecting (the existence of) a 3-cycle

$$
q(): -R(x,y), S(y,z), T(z,x)
$$

2 / 20

イロト 不優 トメ 差 トメ 差 トー 差

K ロ X x 何 X x モ X x モ X → 三 电 → の Q Q → $3 / 20$

For every CQ q , we associate a *hypergrpah* H to it, where the vertices are variables and the hyperedges are atoms.

For every CQ q , we associate a hypergrpah H to it, where the vertices are variables and the hyperedges are atoms.

For every CQ q , we associate a hypergrpah H to it, where the vertices are variables and the hyperedges are atoms.

Example

 $q()$: $-R(x_1, x_2), S(x_2, x_3), T(x_3, x_1)$

For every CQ q, we associate a hypergrpah H to it, where the vertices are variables and the hyperedges are atoms.

Example

 $q()$: $-R(x_1, x_2), S(x_2, x_3), T(x_3, x_1)$

For every CQ q , we associate a hypergrpah H to it, where the vertices are variables and the hyperedges are atoms.

For every CQ q , we associate a hypergrpah H to it, where the vertices are variables and the hyperedges are atoms.

Example

 $q()$: $-R(y_1, z_1), S(y_2, z_2), T(y_3, z_3), U(y_1, y_2, y_3), V(z_1, z_2, z_3)$

For every CQ q, we associate a hypergrpah H to it, where the vertices are variables and the hyperedges are atoms.

Example

 $q()$: $-R(y_1, z_1), S(y_2, z_2), T(y_3, z_3), U(y_1, y_2, y_3), V(z_1, z_2, z_3)$

[Boolean Conjunctive Queries](#page-3-0) [Preliminaries](#page-3-0)

[Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0)

[BCQ as CSP](#page-55-0) [Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

メロトメ 御 トメ 君 トメ 君 トッ 君 QQ $4 / 20$

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in q such that, for any pair of atoms R, S , all variables common to R and S occur on the unique path connecting R and S .

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in q such that, for any pair of atoms R, S , all variables common to R and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear time.

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in q such that, for any pair of atoms R, S , all variables common to R and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear time.

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in q such that, for any pair of atoms R, S , all variables common to R and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear time.

$$
q():-R(x_1,x_2), S(x_2,x_3), T(x_3,x_4), U(x_3,x_5)
$$

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in q such that, for any pair of atoms R, S , all variables common to R and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81')

If a Boolean CQ q has a join tree, then we can evaluate q in linear time.

$$
q():-R(x_1,x_2), S(x_2,x_3), T(x_3,x_4), U(x_3,x_5)
$$

イロト イタト イミト イミト・ミニ りなぐ 5 / 20

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is an assignment from each hyperedge $e \in \mathcal{E}$ to a weight $u_e \in \mathbb{R}_{\geq 0}$, such that for any vertex $\mathsf{v}\in\mathcal{V}$ we have $\quad \sum\quad u_{\mathsf{e}}\geq 1.$ e∈E:v∈e

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is an assignment from each hyperedge $e \in \mathcal{E}$ to a weight $u_e \in \mathbb{R}_{\geq 0}$, such that for any vertex $\mathsf{v}\in\mathcal{V}$ we have $\quad \sum\quad u_{\mathsf{e}}\geq 1.$ e∈E:v∈e

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge cover of H, the output size of q is bounded by $\prod N_e^{u_e}$. e∈E

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is an assignment from each hyperedge $e \in \mathcal{E}$ to a weight $u_e \in \mathbb{R}_{\geq 0}$, such that for any vertex $\mathsf{v}\in\mathcal{V}$ we have $\quad \sum\quad u_{\mathsf{e}}\geq 1.$ e∈E:v∈e

Theorem (AGM Bound)

Let q be a full CQ with associated H . For every fractional edge cover of H, the output size of q is bounded by $\mathsf{N}^{\rho^*(\mathcal{H})}.$

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is an assignment from each hyperedge $e \in \mathcal{E}$ to a weight $u_e \in \mathbb{R}_{\geq 0}$, such that for any vertex $\mathsf{v}\in\mathcal{V}$ we have $\quad \sum\quad u_{\mathsf{e}}\geq 1.$ e∈E:v∈e

Theorem (AGM Bound)

Let q be a full CQ with associated H . For every fractional edge cover of H, the output size of q is bounded by $\mathsf{N}^{\rho^*(\mathcal{H})}.$

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is an assignment from each hyperedge $e \in \mathcal{E}$ to a weight $u_e \in \mathbb{R}_{\geq 0}$, such that for any vertex $\mathsf{v}\in\mathcal{V}$ we have $\quad \sum\quad u_{\mathsf{e}}\geq 1.$ e∈E:v∈e

Theorem (AGM Bound)

Let q be a full CQ with associated H . For every fractional edge cover of H, the output size of q is bounded by $\mathsf{N}^{\rho^*(\mathcal{H})}.$

Example

The minimum fractional edge cover number ρ^* of Δ is $\frac{3}{2}$.

K ロ X K @ X K ミ X K ミ X ミ 299 $6 / 20$

Theorem (Ngo, Porat, Ré & Rudra, 12') Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H})}).$

Theorem (Ngo, Porat, Ré & Rudra, 12') Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H})}).$

```
Example (Listing Triangles)
```
Theorem (Ngo, Porat, Ré & Rudra, 12') Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H})}).$

Example (Listing Triangles)

Call a vertex *heavy* if its degree \geq √ N and *light* otherwise.

Theorem (Ngo, Porat, Ré & Rudra, 12') Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H})}).$

- Example (Listing Triangles)
- Call a vertex *heavy* if its degree \geq √ N and *light* otherwise.

Directed 2-paths with intermediate vertices being light:

Theorem (Ngo, Porat, Ré & Rudra, 12') Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H})}).$

Example (Listing Triangles)

Call a vertex *heavy* if its degree \geq √ N and *light* otherwise.

Directed 2-paths with intermediate vertices being light: there are $N \cdot$ √ N many and they can be found in $O(N \cdot$ √ $\overline{\mathcal{N}})=\mathcal{O}(\mathcal{N}^{\frac{3}{2}})$ time. For each such path, check whether the endpoints are connected.

Theorem (Ngo, Porat, Ré & Rudra, 12') Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H})}).$

Example (Listing Triangles)

Call a vertex *heavy* if its degree \geq √ N and *light* otherwise.

Directed 2-paths with intermediate vertices being light: there are $N \cdot$ √ N many and they can be found in $O(N \cdot$ √ $\overline{\mathcal{N}})=\mathcal{O}(\mathcal{N}^{\frac{3}{2}})$ time. For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy:

Theorem (Ngo, Porat, Ré & Rudra, 12') Any full CQ q can be computed in time $O(N^{\rho^*(\mathcal{H})}).$

Example (Listing Triangles)

Call a vertex *heavy* if its degree \geq √ N and *light* otherwise.

Directed 2-paths with intermediate vertices being light: there are $N \cdot$ √ N many and they can be found in $O(N \cdot$ √ $\overline{\mathcal{N}})=\mathcal{O}(\mathcal{N}^{\frac{3}{2}})$ time. For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most $\frac{2N}{2}$ $\frac{N}{N} = O(\sqrt{N})$ many heavy vertices. Construct the $O(\sqrt{N})$ -by- $O(\sqrt{N})$ matrix and use matrix multiplication to find in $O((\sqrt{N})^3) = O(N^{\frac{3}{2}})$ time.

K ロ X K @ X K ミ X K ミ X ミ 299 7 / 20

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where $\mathcal T$ is a tree and $\chi:V(\mathcal{T})\rightarrow2^{\mathcal{V}}$, such that (1) $\forall e\in\mathcal{E}$ is a subset for some $\chi(t), t \in V(\mathcal{T})$ and (2) $\forall v \in V$ the set $\{t \mid v \in \chi(t)\}\$ is a non-empty connected sub-tree of $\mathcal T$.

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where $\mathcal T$ is a tree and $\chi:V(\mathcal{T})\rightarrow2^{\mathcal{V}}$, such that (1) $\forall e\in\mathcal{E}$ is a subset for some $\chi(t)$, $t \in V(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}\$ is a non-empty connected sub-tree of $\mathcal T$.

Example

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where $\mathcal T$ is a tree and $\chi:V(\mathcal{T})\rightarrow2^{\mathcal{V}}$, such that (1) $\forall e\in\mathcal{E}$ is a subset for some $\chi(t)$, $t \in V(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}\$ is a non-empty connected sub-tree of $\mathcal T$.

Example

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where $\mathcal T$ is a tree and $\chi:V(\mathcal{T})\rightarrow2^{\mathcal{V}}$, such that (1) $\forall e\in\mathcal{E}$ is a subset for some $\chi(t)$, $t \in V(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}\$ is a non-empty connected sub-tree of \mathcal{T} .

Example

$$
\begin{array}{c}\n\begin{array}{c}\n\diagup x_1 & x_2 & x_3 \\
\hline\n\end{array}\n\end{array}
$$
\nA tree decomposition for \Box is $\begin{array}{c}\n\diagdown x_1 & x_3 & x_4 \\
\hline\n\end{array}$

Definition (Fractional Hypertree Width)

The *fractional hypertree width* f htw $(\mathcal{H}) := \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} \rho^*(\chi(t)).$

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where $\mathcal T$ is a tree and $\chi:V(\mathcal{T})\rightarrow2^{\mathcal{V}}$, such that (1) $\forall e\in\mathcal{E}$ is a subset for some $\chi(t)$, $t \in V(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}\$ is a non-empty connected sub-tree of \mathcal{T} .

Example

$$
A \text{ tree decomposition for } \boxed{\begin{array}{c} x_1 \ x_2 \ x_3 \\ \hline \end{array}}
$$

Definition (Fractional Hypertree Width)

The *fractional hypertree width* f htw $(\mathcal{H}) := \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} \rho^*(\chi(t)).$

Example

Definition (Tree Decomposition)

A tree decomposition of $\mathcal{H} = (\mathcal{V}, \mathcal{E})$ is a pair (\mathcal{T}, χ) , where $\mathcal T$ is a tree and $\chi:V(\mathcal{T})\rightarrow2^{\mathcal{V}}$, such that (1) $\forall e\in\mathcal{E}$ is a subset for some $\chi(t)$, $t \in V(\mathcal{T})$ and (2) $\forall v \in \mathcal{V}$ the set $\{t \mid v \in \chi(t)\}\$ is a non-empty connected sub-tree of $\mathcal T$.

Example

$$
A \text{ tree decomposition for } \boxed{\begin{array}{c} x_1 \ x_2 \ x_3 \\ \hline \end{array}}
$$

Definition (Fractional Hypertree Width)

The *fractional hypertree width* f htw $(\mathcal{H}) := \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} \rho^*(\chi(t)).$

Example

The fractional hypertree width of \Box is 2.

メロトメ 御 トメ 君 トメ 君 トー 君 299 8 / 20

Definition (Submodularity)

A function $b: 2^\mathcal{V} \to \mathbb{R}^+$ is *submodular* if for any $X,$ $Y \subseteq \mathcal{V}$, we have $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y)$.

Definition (Submodularity)

A function $b: 2^\mathcal{V} \to \mathbb{R}^+$ is *submodular* if for any $X,$ $Y \subseteq \mathcal{V}$, we have $b(X) + b(Y) > b(X ∩ Y) + b(X ∪ Y)$.

Definition (Submodular Width)

The *submodular width* subw $(\mathcal{H}) := \max_b \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} b(\chi(t)).$

Definition (Submodularity)

A function $b: 2^\mathcal{V} \to \mathbb{R}^+$ is *submodular* if for any $X,$ $Y \subseteq \mathcal{V}$, we have $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y)$.

Definition (Submodular Width)

The *submodular width* subw $(\mathcal{H}) := \max_b \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} b(\chi(t)).$

Lemma (Marx, 10')

For any hypergraph H, subw (H) < fhtw (H) .

Definition (Submodularity)

A function $b: 2^\mathcal{V} \to \mathbb{R}^+$ is *submodular* if for any $X,$ $Y \subseteq \mathcal{V}$, we have $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y)$.

Definition (Submodular Width)

The *submodular width* subw $(\mathcal{H}) := \max_b \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} b(\chi(t)).$

8 / 20

メロトメ 御 トメ 差 トメ 差 トー 差

Lemma (Marx, 10')

For any hypergraph H, subw (H) < fhtw (H) .

Theorem (Khamis, Ngo & Suciu, 16') Any BCQ q can be computed in time $\tilde{O}(N^{\mathrm{subw}(q)})$.

Definition (Submodularity)

A function $b: 2^\mathcal{V} \to \mathbb{R}^+$ is *submodular* if for any $X,$ $Y \subseteq \mathcal{V}$, we have $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y)$.

Definition (Submodular Width)

The *submodular width* subw $(\mathcal{H}) := \max_b \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} b(\chi(t)).$

Lemma (Marx, 10')

For any hypergraph H, subw (H) < fhtw (H) .

Theorem (Khamis, Ngo & Suciu, 16') Any BCQ q can be computed in time $\tilde{O}(N^{\mathrm{subw}(q)})$.

Example

Definition (Submodularity)

A function $b: 2^\mathcal{V} \to \mathbb{R}^+$ is *submodular* if for any $X,$ $Y \subseteq \mathcal{V}$, we have $b(X) + b(Y) \ge b(X \cap Y) + b(X \cup Y)$.

Definition (Submodular Width)

The *submodular width* subw $(\mathcal{H}) := \max_b \min_{(\mathcal{T}, \chi) } \max_{t \in V(\mathcal{T})} b(\chi(t)).$

Lemma (Marx, 10')

For any hypergraph H, subw (H) < fhtw (H) .

Theorem (Khamis, Ngo & Suciu, 16')

Any BCQ q can be computed in time $\tilde{O}(N^{\mathrm{subw}(q)})$.

Example

The submodular width of \bigsqcup is $\frac{3}{2}$.

メロトメ 御 トメ 差 トメ 差 トー 差

[Boolean Conjunctive Queries](#page-3-0) [Preliminaries](#page-3-0) [Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0) [BCQ as CSP](#page-55-0) [Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

K ロ X x 何 X x モ X x モ X → 三 电 → の Q Q → 9 / 20

A constraint satisfaction problem consists of (V, D, C) , where each constraint is a relation on a subset of the variables.

A constraint satisfaction problem consists of (V, D, C) , where each constraint is a relation on a subset of the variables.

Example

A constraint satisfaction problem consists of (V, D, C) , where each constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

A constraint satisfaction problem consists of (V, D, C) , where each constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

Example

A constraint satisfaction problem consists of (V, D, C) , where each constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of database relations.

A constraint satisfaction problem consists of (V, D, C) , where each constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, $D = \{0, 1\}$, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. $CSP(C)$ is said to be fixed parameter tractable if there is an algorithm solving every instance I of $\mathsf{CSP}(\mathcal{H})$ in time $f(\mathcal{H})(||I||)^{O(1)}$, where f is a computable function.

K ロ X x 個 X X ミ X X ミ X ミ → つ Q Q → 10 / 20

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded edge size, then assuming FPT \neq W[1] the following are equivalent:

Theorem (Grohe, 03')

If C is a recursively enumerable class of hypergraphs with bounded edge size, then assuming FPT \neq W[1] the following are equivalent:

1. $CSP(\mathcal{C})$ is polynomial-time solvable.

Theorem (Grohe, 03')

If $\mathcal C$ is a recursively enumerable class of hypergraphs with bounded edge size, then assuming FPT \neq W[1] the following are equivalent:

1. $CSP(\mathcal{C})$ is polynomial-time solvable.

2. $CSP(\mathcal{C})$ is fixed-parameter tractable.

Theorem (Grohe, 03')

If $\mathcal C$ is a recursively enumerable class of hypergraphs with bounded edge size, then assuming FPT \neq W[1] the following are equivalent:

- 1. $CSP(\mathcal{C})$ is polynomial-time solvable.
- 2. $CSP(\mathcal{C})$ is fixed-parameter tractable.
- 3. C has bounded treewidth.

Theorem (Grohe, 03')

If $\mathcal C$ is a recursively enumerable class of hypergraphs with bounded edge size, then assuming $FPT \neq W[1]$ the following are equivalent:

- 1. $CSP(\mathcal{C})$ is polynomial-time solvable.
- 2. $CSP(\mathcal{C})$ is fixed-parameter tractable.
- 3. C has bounded treewidth.

Theorem (Max, 13')

Let $\mathcal C$ be a recursively enumerable class of hypergraphs. Assuming the Exponential Time Hypothesis, $CSP(\mathcal{C})$ parametrized by \mathcal{H} is fixed-parameter tractable if and only if C has bounded submodular width.

[Boolean Conjunctive Queries](#page-3-0) [Preliminaries](#page-3-0)

[Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0) [BCQ as CSP](#page-55-0) [Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

Semiring Framework, I

イロト イタト イミト イミト・ミニ りなぐ 11 / 20

Semiring Framework, I

$$
q\left(\right):-R_{1}\left(\vec{x}_{1}\right),R_{2}\left(\vec{x}_{2}\right),\ldots,R_{n}\left(\vec{x}_{n}\right)
$$
$$
q\left(\right) : -R_1\left(\vec{x}_1\right), R_2\left(\vec{x}_2\right), \ldots, R_n\left(\vec{x}_n\right)
$$

$$
q(I) := \bigvee_{\text{rvaluation } i=1} \bigwedge_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$

$$
q\left(\right) : -R_1\left(\vec{x}_1\right), R_2\left(\vec{x}_2\right), \ldots, R_n\left(\vec{x}_n\right)
$$
\n
$$
q(I) := \bigvee_{\text{v:valuation } i=1} \bigwedge_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$
\n
$$
q(I) := \bigoplus_{\text{v:valuation } i=1} \bigotimes_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$

$$
q\left(\right) : -R_1\left(\vec{x}_1\right), R_2\left(\vec{x}_2\right), \ldots, R_n\left(\vec{x}_n\right)
$$
\n
$$
q(I) := \bigvee_{\text{r:valuation } i=1} \bigwedge_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$
\n
$$
q(I) := \bigoplus_{\text{r:valuation } i=1} \bigotimes_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$

11 / 20

 299

メロトメ 御 トメ 差 トメ 差 トー 差

Example

$$
q\left(\right) : -R_1\left(\vec{x}_1\right), R_2\left(\vec{x}_2\right), \ldots, R_n\left(\vec{x}_n\right)
$$
\n
$$
q(I) := \bigvee_{\text{v:valuation } i=1} \bigwedge_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$
\n
$$
q(I) := \bigoplus_{\text{v:valuation } i=1} \bigotimes_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$

Example $({\text{TRUE}, \text{FALSE}}, \vee, \wedge) \leftrightarrow \text{set semantics}$

$$
q\left(\right) : -R_1\left(\vec{x}_1\right), R_2\left(\vec{x}_2\right), \ldots, R_n\left(\vec{x}_n\right)
$$
\n
$$
q(I) := \bigvee_{\text{v:valuation } i=1} \bigwedge_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$
\n
$$
q(I) := \bigoplus_{\text{v:valuation } i=1} \bigotimes_{i=1}^n R_i\left(\mathbf{v}\left(\vec{x}_i\right)\right)
$$

11 / 20

 QQ

イロト 不優 トメ 差 トメ 差 トー 差

Example

 $({\text{TRUE}, \text{FALSE}}, \vee, \wedge) \leftrightarrow \text{set semantics}$ $(N, +, *) \leftrightarrow$ bag semantics

$$
q\left(\right) : -R_1\left(\vec{x}_1\right), R_2\left(\vec{x}_2\right), \ldots, R_n\left(\vec{x}_n\right)
$$
\n
$$
q(I) := \bigvee_{v:\text{valuation } i=1} \bigwedge_{i=1}^n R_i\left(v\left(\vec{x}_i\right)\right)
$$
\n
$$
q(I) := \bigoplus_{v:\text{valuation } i=1} \bigotimes_{i=1}^n R_i\left(v\left(\vec{x}_i\right)\right)
$$

 $v:$ valuation $i=1$

Example

 $({\text{TRUE}, \text{FALSE}}, \vee, \wedge) \leftrightarrow \text{set semantics}$ $(N, +, *) \leftrightarrow$ bag semantics $([0, 1], +, *) \leftrightarrow$ probabilistic database

K ロ X x 個 X X ミ X X ミ X ミ → つ Q Q → 12 / 20

Example

メロトメ 御 トメ 君 トメ 君 トッ 君 QQ 12 / 20

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$ Compute perm $(A) := \sum$ $\sigma{\in}\mathsf{S}_n$ \prod^n $\prod\limits_{i=1}^{\infty}a_{i,\sigma(i)}\Rightarrow$ #P-hard

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$ Compute perm $(A) := \sum$ $\sigma{\in}\mathsf{S}_n$ \prod^n $\prod\limits_{i=1}^{\infty}a_{i,\sigma(i)}\Rightarrow$ #P-hard Compute $\operatorname{asgmt}(A):=\min_{\sigma\in S_n}\sum_{i=1}^n$ $\sum\limits_{i=1}^{n} a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$ Compute perm $(A) := \sum$ $\sigma{\in}\mathsf{S}_n$ \prod^n $\prod\limits_{i=1}^{\infty}a_{i,\sigma(i)}\Rightarrow$ #P-hard Compute $\operatorname{asgmt}(A):=\min_{\sigma\in S_n}\sum_{i=1}^n$ $\sum\limits_{i=1}^{n} a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$ Compute perm $(A) := \sum$ $\sigma{\in}\mathsf{S}_n$ \prod^n $\prod\limits_{i=1}^{\infty}a_{i,\sigma(i)}\Rightarrow$ #P-hard Compute $\operatorname{asgmt}(A):=\min_{\sigma\in S_n}\sum_{i=1}^n$ $\sum\limits_{i=1}^{n} a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Given an edge-weighted graph $G = (V, \text{weight})$

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$ Compute perm $(A) := \sum$ $\sigma{\in}\mathsf{S}_n$ \prod^n $\prod\limits_{i=1}^{\infty}a_{i,\sigma(i)}\Rightarrow$ #P-hard Compute $\operatorname{asgmt}(A):=\min_{\sigma\in S_n}\sum_{i=1}^n$ $\sum\limits_{i=1}^{n} a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Given an edge-weighted graph $G = (V, \text{weight})$ Compute $\bigvee \bigwedge$ weight $(\{v, w\}) \leftrightarrow$ Boolean *k*-clique $V' \subseteq V \{v,w\} \in V'$ $|V'| = k$

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$ Compute perm $(A) := \sum$ $\sigma{\in}\mathsf{S}_n$ \prod^n $\prod\limits_{i=1}^{\infty}a_{i,\sigma(i)}\Rightarrow$ #P-hard Compute $\operatorname{asgmt}(A):=\min_{\sigma\in S_n}\sum_{i=1}^n$ $\sum\limits_{i=1}^{n} a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Given an edge-weighted graph $G = (V, \text{weight})$ Compute $\bigvee \bigwedge$ weight $(\{v, w\}) \leftrightarrow$ Boolean *k*-clique $V' \subseteq V \{v,w\} \in V'$ $|V'| = k$ Compute $\sum \prod$ weight $(\{v, w\}) \leftrightarrow$ Counting k-clique $V' \subseteq V \{v,w\} \in V'$ $|V'| = k$

Example

Given an *n*-by-*n* square matrix $A = (a_{ii})$ Compute perm $(A) := \sum$ $\sigma{\in}\mathsf{S}_n$ \prod^n $\prod\limits_{i=1}^{\infty}a_{i,\sigma(i)}\Rightarrow$ #P-hard Compute $\operatorname{asgmt}(A):=\min_{\sigma\in S_n}\sum_{i=1}^n$ $\sum\limits_{i=1}^{n} a_{i,\sigma(i)} \Rightarrow$ P-time

Example

Given an edge-weighted graph $G = (V, \text{weight})$ Compute $\bigvee \bigwedge$ weight $(\{v, w\}) \leftrightarrow$ Boolean *k*-clique $V' \subseteq V \{v,w\} \in V'$ $|V'| = k$ Compute $\sum \prod$ weight $(\{v, w\}) \leftrightarrow$ Counting k-clique $V' \subseteq V \{v,w\} \in V'$ $|V'| = k$ Compute min \sum weight($\{v, w\}$) \leftrightarrow Minimum k-clique $V' \subseteq V$ $|V' \subseteq V$ $\{v,w\} \in V'$

[Boolean Conjunctive Queries](#page-3-0)

[Preliminaries](#page-3-0) [Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0) [BCQ as CSP](#page-55-0)

[Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

イロト イタト イミト イミト・ミニ りなぐ 13 / 20

"Hardness in easy problems"

"Hardness in easy problems"

The edit distance between two strings $:= \min \#$ insertions, deletions or substitutions to transfrom from one to the other

"Hardness in easy problems"

The edit distance between two strings $:=$ min $#$ insertions, deletions or substitutions to transfrom from one to the other

Can be solved in $O(n^2)$ by simple dynamic programming

"Hardness in easy problems"

The edit distance between two strings $:=$ min $#$ insertions, deletions or substitutions to transfrom from one to the other

Can be solved in $O(n^2)$ by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time $O(n^{2-\delta})$ for some constant $\delta > 0$, then the Strong Exponential Time Hypothesis is wrong.

"Hardness in easy problems"

The edit distance between two strings $:=$ min $#$ insertions, deletions or substitutions to transfrom from one to the other

Can be solved in $O(n^2)$ by simple dynamic programming

Theorem (Backurs & Indyk, 15')

If the edit distance can be solved in time $O(n^{2-\delta})$ for some constant $\delta > 0$, then the Strong Exponential Time Hypothesis is wrong.

Informally, ETH says that 3-SAT cannot be solved in $2^{o(n)}$ time and SETH says that k-SAT needs 2ⁿ for large k (when $k \to \infty$).

K ロ X x 個 X X ミ X X ミ X ミ → つ Q Q → 14 / 20

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0$, $\exists k$ such that k-SAT on *n* variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0$, $\exists k$ such that k-SAT on *n* variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

3-SUM: No randomized algorithm can solve 3-SUM on *n* integers in $\{-n^4,\ldots,n^4\}$ cannot be solved in $O(n^{2-\epsilon})$ time for any $\epsilon>0.$

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0$, $\exists k$ such that k-SAT on *n* variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

3-SUM: No randomized algorithm can solve 3-SUM on *n* integers in $\{-n^4,\ldots,n^4\}$ cannot be solved in $O(n^{2-\epsilon})$ time for any $\epsilon>0.$

APSP: No randomized algorithm can solve APSP in $O(n^{3-\epsilon})$ time for $\epsilon > 0$ on *n* node graphs with edge weights $\{-n^c, \ldots, n^c\}$ and no negative cycles for large enough c.

...

ETH: $\exists \delta > 0$ such that 3-SAT requires $2^{\delta n}$ time.

SETH: $\forall \epsilon > 0$, $\exists k$ such that k-SAT on *n* variables cannot be solved in $O(2^{(1-\epsilon)n})$ time.

3-SUM: No randomized algorithm can solve 3-SUM on *n* integers in $\{-n^4,\ldots,n^4\}$ cannot be solved in $O(n^{2-\epsilon})$ time for any $\epsilon>0.$

APSP: No randomized algorithm can solve APSP in $O(n^{3-\epsilon})$ time for $\epsilon > 0$ on *n* node graphs with edge weights $\{-n^c, \ldots, n^c\}$ and no negative cycles for large enough c.

Conjectures related to k-Clique

イロト 不優 トメ 差 トメ 差 トー 差 299 15 / 20

Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any combinatorial algorithm to detect a k-clique in a graph with n nodes requires n^{k−o(1)} time on a Word RAM model.

Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any combinatorial algorithm to detect a k-clique in a graph with n nodes requires n^{k−o(1)} time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln, Vassilevska-Williams & Williams, 17')

Any randomized algorithm to find a k-clique of minimum total edge weight requires n^{k−o(1)} time on a Word RAM model.

[Boolean Conjunctive Queries](#page-3-0)

[Preliminaries](#page-3-0) [Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0) [BCQ as CSP](#page-55-0)

[Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

Clique Embedding Power, I

K ロ X K @ X K ミ X K ミ X ミ 2990 16 / 20

Clique Embedding Power, I

Definition (Touch)

We say $X, Y \subseteq V$ touch in H if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Clique Embedding Power, I

Definition (Touch)

We say $X, Y \subseteq V$ touch in H if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A k-clique embedding from C_k to H is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subset V$ such that $(1) \forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in H.
Definition (Touch)

We say $X, Y \subseteq V$ touch in H if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A k-clique embedding from C_k to H is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subset V$ such that $(1) \forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in H.

Definition (Touch)

We say $X, Y \subseteq V$ touch in H if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A k-clique embedding from C_k to H is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq V$ such that $(1) \forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in H.

Definition (Touch)

We say $X, Y \subseteq V$ touch in H if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A k-clique embedding from C_k to H is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subseteq V$ such that $(1) \forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in H.

Definition (Touch)

We say $X, Y \subseteq V$ touch in H if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A k-clique embedding from C_k to H is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subset V$ such that $(1) \forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in H.

Definition (Touch)

We say $X, Y \subseteq V$ touch in H if either $X \cap Y \neq \emptyset$ or $\exists e \in \mathcal{E}$ such that $e \cap X \neq \emptyset$ and $e \cap Y \neq \emptyset$.

Definition (K-Clique Embedding)

A k-clique embedding from C_k to H is a mapping ψ from $v \in [k]$ to a non-empty subset $\psi(v) \subset V$ such that $(1) \forall v, \psi(v)$ induces a connected subhypergraph and (2) $\forall \{v, u\}, \psi(v), \psi(u)$ touch in H.

イロト イタト イミト イミト・ミニ りなぐ 17 / 20

Definition (Weak Edge Depth)

 $\forall e$ the weak edge depth of e is $d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|$. The *weak edge depth of* ψ *we*d (ψ) := max $d_{\psi}(e)$.

Definition (Weak Edge Depth)

 $\forall e$ the weak edge depth of e is $d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|$. The *weak edge depth of* ψ *we*d (ψ) := max $d_{\psi}(e)$.

Definition (Clique Embedding Power)

The *k-clique embedding power* is $\mathsf{emb}_k(\mathcal{H}) := \max_{\psi}$ k $\frac{\kappa}{\mathsf{wed}(\psi)}$. The *clique embedding power is emb* $(\mathcal{H}) := \mathsf{sup\,emb}_k(\mathcal{H}).$ k≥3

Definition (Weak Edge Depth)

 $\forall e$ the weak edge depth of e is $d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|$. The *weak edge depth of* ψ *we*d (ψ) := max $d_{\psi}(e)$.

Definition (Clique Embedding Power)

The *k-clique embedding power* is $\mathsf{emb}_k(\mathcal{H}) := \max_{\psi}$ k $\frac{\kappa}{\mathsf{wed}(\psi)}$. The *clique embedding power is emb* $(\mathcal{H}) := \mathsf{sup\,emb}_k(\mathcal{H}).$ k≥3

Definition (Weak Edge Depth)

 $\forall e$ the weak edge depth of e is $d_{\psi}(e) := |\{v \in [k] \mid \psi(v) \cap e \neq \emptyset\}|$. The *weak edge depth of* ψ *we*d (ψ) := max $d_{\psi}(e)$.

Definition (Clique Embedding Power)

The *k-clique embedding power* is $\mathsf{emb}_k(\mathcal{H}) := \max_{\psi}$ k $\frac{\kappa}{\mathsf{wed}(\psi)}$. The *clique embedding power is emb* $(\mathcal{H}) := \mathsf{sup\,emb}_k(\mathcal{H}).$ k≥3

Example

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ 17 / 20

[Boolean Conjunctive Queries](#page-3-0)

[Preliminaries](#page-3-0) [Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0) [BCQ as CSP](#page-55-0)

[Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

K ロ X x 個 X X ミ X X ミ X ミ → つ Q Q → 18 / 20

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time $O(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time $O(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time $O(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

18 / 20

(ロ) (何) (ヨ) (ヨ)

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Theorem (F., Koutris & Zhao, 23')

For any H , CSP(H) cannot be computed via a combinatorial algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Combinatorial k-Clique Conjecture is false.

Semiring Oblivious Reduction

K ロ X K @ X K ミ X K ミ X ミ 2990 19 / 20

The proof can be adapted to tropical semiring (min k -clique) by assigning each pair $\{u, v\} \subseteq [k]$ to a unique hyperedge according to ψ .

The proof can be adapted to tropical semiring (min k-clique) by assigning each pair $\{u, v\} \subseteq [k]$ to a unique hyperedge according to ψ .

Theorem (F., Koutris & Zhao, 23')

For any H , $CSP(H)$ over tropical semiring cannot be computed via any randomized algorithm in time O $(|I|^{\mathsf{emb}(\mathcal{H})-\epsilon})$ unless the Min Weight k-Clique Conjecture is false.

[Boolean Conjunctive Queries](#page-3-0)

[Preliminaries](#page-3-0) [Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0) [BCQ as CSP](#page-55-0)

[Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0)

[Clique embedding power](#page-104-0) [Main results](#page-118-0)

[Tightness and gaps](#page-133-0)

Summary

Table: Clique embedding power and submodular width for some classes of queries

[Boolean Conjunctive Queries](#page-3-0)

[Preliminaries](#page-3-0) [Algorithms](#page-20-0)

[Sum-of-Product Computation](#page-55-0)

[BCQ as CSP](#page-55-0) [Semiring framework](#page-69-0)

[Fine-Grained Complexity](#page-88-0)

[Our Work](#page-104-0) [Clique embedding power](#page-104-0) [Main results](#page-118-0) [Tightness and gaps](#page-133-0)

Thank You!

K ロ ▶ (d) | K 글) | K 글) | [글 | 10 Q Q |

References I

- E. Albert Atserias, Martin Grohe, and Dániel Marx, Size bounds and query plans for relational joins, SIAM J. Comput. 42 (2013), no. 4, 1737–1767.
- 暈 Arturs Backurs and Piotr Indyk, Edit distance cannot be computed in strongly subquadratic time (unless SETH is false), SIAM J. Comput. 47 (2018), no. 3, 1087–1097.
- Ħ Todd J. Green, Gregory Karvounarakis, and Val Tannen, Provenance semirings, PODS, ACM, 2007, pp. 31–40.
- 譶 Martin Grohe, The complexity of homomorphism and constraint satisfaction problems seen from the other side, J. ACM 54 (2007), no. 1, 1:1–1:24.

References II

- F Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu, What do shannon-type inequalities, submodular width, and disjunctive datalog have to do with one another?, PODS, ACM, 2017, pp. 429–444.
- 歸 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams, Tight hardness for shortest cycles and paths in sparse graphs, SODA, SIAM, 2018, pp. 1236–1252.
- Dániel Marx, Tractable hypergraph properties for constraint 旵 satisfaction and conjunctive queries, J. ACM 60 (2013), no. 6, 42:1–42:51.
- F. Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra, Worst-case optimal join algorithms, J. ACM **65** (2018), no. 3, 16:1–16:40.

References III

F Mihalis Yannakakis, Algorithms for acyclic database schemes, VLDB, IEEE Computer Society, 1981, pp. 82–94.