
The Fine-Grained Complexity of Boolean
Conjunctive Queries and Sum-Product Problems

Austen Z. Fan Paraschos Koutris Hangdong Zhao

University of Wisconsin, Madison

ICALP 2023

1 / 20

Outline

Boolean Conjunctive Queries

Sum-of-Product Computation

Fine-Grained Complexity

Our Work

1 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

1 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

1 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)

2 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)

2 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)

2 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)

2 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)

2 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)

2 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)

2 / 20

Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y), S(y , z),T (z , x)

2 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x1)

x1

x2 x3

3 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x1)

x1

x2 x3

3 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x1)

x1

x2 x3

3 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x1)

x1

x2 x3

3 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x1)

x1

x2 x3

3 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(y1, z1),S(y2, z2),T (y3, z3),U(y1, y2, y3),V (z1, z2, z3)

y1

y2

y3

z1

z2

z3

3 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(y1, z1),S(y2, z2),T (y3, z3),U(y1, y2, y3),V (z1, z2, z3)

y1

y2

y3

z1

z2

z3

3 / 20

Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(y1, z1),S(y2, z2),T (y3, z3),U(y1, y2, y3),V (z1, z2, z3)

y1

y2

y3

z1

z2

z3

3 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

3 / 20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U

4 / 20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U

4 / 20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U

4 / 20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U

4 / 20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U

4 / 20

Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U

4 / 20

Worst-Case Optimal Joins, I

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, E) is an
assignment from each hyperedge e ∈ E to a weight ue ∈ R≥0, such
that for any vertex v ∈ V we have

∑
e∈E:v∈e

ue ≥ 1.

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by

∏
e∈E

Nue
e .

5 / 20

Worst-Case Optimal Joins, I

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, E) is an
assignment from each hyperedge e ∈ E to a weight ue ∈ R≥0, such
that for any vertex v ∈ V we have

∑
e∈E:v∈e

ue ≥ 1.

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by

∏
e∈E

Nue
e .

5 / 20

Worst-Case Optimal Joins, I

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, E) is an
assignment from each hyperedge e ∈ E to a weight ue ∈ R≥0, such
that for any vertex v ∈ V we have

∑
e∈E:v∈e

ue ≥ 1.

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by

∏
e∈E

Nue
e .

5 / 20

Worst-Case Optimal Joins, I

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, E) is an
assignment from each hyperedge e ∈ E to a weight ue ∈ R≥0, such
that for any vertex v ∈ V we have

∑
e∈E:v∈e

ue ≥ 1.

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by Nρ∗(H).

Example

The minimum fractional edge cover number ρ∗ of is 3
2 .

5 / 20

Worst-Case Optimal Joins, I

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, E) is an
assignment from each hyperedge e ∈ E to a weight ue ∈ R≥0, such
that for any vertex v ∈ V we have

∑
e∈E:v∈e

ue ≥ 1.

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by Nρ∗(H).

Example

The minimum fractional edge cover number ρ∗ of is 3
2 .

5 / 20

Worst-Case Optimal Joins, I

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, E) is an
assignment from each hyperedge e ∈ E to a weight ue ∈ R≥0, such
that for any vertex v ∈ V we have

∑
e∈E:v∈e

ue ≥ 1.

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by Nρ∗(H).

Example

The minimum fractional edge cover number ρ∗ of is 3
2 .

5 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light:

there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy:

but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2) time.

6 / 20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T)

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.

7 / 20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T)

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.

7 / 20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T)

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.

7 / 20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T)

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.

7 / 20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T)

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.

7 / 20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T)

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.

7 / 20

Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T)

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.
7 / 20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T)

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .

8 / 20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T)

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .

8 / 20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T)

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .

8 / 20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T)

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .

8 / 20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T)

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .

8 / 20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T)

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .

8 / 20

Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T)

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .

8 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

8 / 20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.

9 / 20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.

9 / 20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.

9 / 20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.

9 / 20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.

9 / 20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.

9 / 20

Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.

9 / 20

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

10 / 20

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

10 / 20

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

10 / 20

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

10 / 20

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

10 / 20

Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.

10 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

10 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics

(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics

([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i))

q(I) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database

11 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)

Compute
∨

V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique

12 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

12 / 20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k → ∞).

13 / 20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k → ∞).

13 / 20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k → ∞).

13 / 20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k → ∞).

13 / 20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k → ∞).

13 / 20

Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k → ∞).

13 / 20

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

14 / 20

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

14 / 20

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

14 / 20

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

14 / 20

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

14 / 20

Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...

14 / 20

Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

15 / 20

Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

15 / 20

Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.

15 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

15 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1

1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6

16 / 20

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

17 / 20

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

17 / 20

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

17 / 20

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

17 / 20

Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

5,1 4,5 1-3

2,3

1,4

7

5,6

4-6

17 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

17 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

x4 x5
⟨v24 , v45 ⟩ ⟨v45 , v61 ⟩

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

x4 x5
⟨v24 , v45 ⟩ ⟨v45 , v61 ⟩

x5 x1
⟨v45 , v61 ⟩ ⟨v61 , v52 ⟩

18 / 20

Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2

2,3

3,4

5,1 4,5 v11 v12 v13 v14 v15

v61
v51
v41
v31
v21

x1 x2
⟨v61 , v52 ⟩ ⟨v52 , v13 ⟩
⟨v41 , v52 ⟩ ⟨v52 , v13 ⟩

x2 x3
⟨v52 , v13 ⟩ ⟨v13 , v24 ⟩

x3 x4
⟨v53 , v44 ⟩ ⟨v44 , v45 ⟩
⟨v13 , v24 ⟩ ⟨v24 , v45 ⟩
⟨v13 , v44 ⟩ ⟨v44 , v45 ⟩

x4 x5
⟨v24 , v45 ⟩ ⟨v45 , v61 ⟩

x5 x1
⟨v45 , v61 ⟩ ⟨v61 , v52 ⟩

18 / 20

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} ⊆ [k] to a unique hyperedge according
to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

19 / 20

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} ⊆ [k] to a unique hyperedge according
to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

19 / 20

Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} ⊆ [k] to a unique hyperedge according
to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.

19 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

19 / 20

Summary

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 17/9 2

Qhb 7/4 2

Table: Clique embedding power and submodular width for some classes of
queries

20 / 20

Boolean Conjunctive Queries
Preliminaries
Algorithms

Sum-of-Product Computation
BCQ as CSP
Semiring framework

Fine-Grained Complexity

Our Work
Clique embedding power
Main results
Tightness and gaps

20 / 20

Thank You!

References I

Albert Atserias, Martin Grohe, and Dániel Marx, Size bounds
and query plans for relational joins, SIAM J. Comput. 42
(2013), no. 4, 1737–1767.

Arturs Backurs and Piotr Indyk, Edit distance cannot be
computed in strongly subquadratic time (unless SETH is
false), SIAM J. Comput. 47 (2018), no. 3, 1087–1097.

Todd J. Green, Gregory Karvounarakis, and Val Tannen,
Provenance semirings, PODS, ACM, 2007, pp. 31–40.

Martin Grohe, The complexity of homomorphism and
constraint satisfaction problems seen from the other side, J.
ACM 54 (2007), no. 1, 1:1–1:24.

20 / 20

References II

Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu, What
do shannon-type inequalities, submodular width, and
disjunctive datalog have to do with one another?, PODS,
ACM, 2017, pp. 429–444.

Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan
Williams, Tight hardness for shortest cycles and paths in
sparse graphs, SODA, SIAM, 2018, pp. 1236–1252.

Dániel Marx, Tractable hypergraph properties for constraint
satisfaction and conjunctive queries, J. ACM 60 (2013), no. 6,
42:1–42:51.

Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra,
Worst-case optimal join algorithms, J. ACM 65 (2018), no. 3,
16:1–16:40.

20 / 20

References III

Mihalis Yannakakis, Algorithms for acyclic database schemes,
VLDB, IEEE Computer Society, 1981, pp. 82–94.

20 / 20

	Boolean Conjunctive Queries
	Preliminaries
	Algorithms

	Sum-of-Product Computation
	BCQ as CSP
	Semiring framework

	Fine-Grained Complexity
	Our Work
	Clique embedding power
	Main results
	Tightness and gaps

