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Preliminaries, I

A conjunctive query q is an expression of the form

q (x1, . . . , xk) : −R1 (y⃗1) , . . . ,Rn (y⃗n) .

It is called Boolean if its head is empty.

Example

Listing 3-cycles

q(x , y , z) : −R(x , y),S(y , z),T (z , x)

Detecting (the existence of) a 3-cycle

q() : −R(x , y),S(y , z),T (z , x)
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Preliminaries, II

For every CQ q, we associate a hypergrpah H to it, where the
vertices are variables and the hyperedges are atoms.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x1)

x1

x2 x3
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Yannakakis Algorithm

Definition (Join Tree)

A join tree for a CQ q is a tree T whose vertices are the atoms in
q such that, for any pair of atoms R,S , all variables common to R
and S occur on the unique path connecting R and S .

Theorem (Yannakakis, 81’)

If a Boolean CQ q has a join tree, then we can evaluate q in linear
time.

Example

q() : −R(x1, x2),S(x2, x3),T (x3, x4),U(x3, x5)

R S
T

U
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Worst-Case Optimal Joins, I

Definition (Fractional Edge Cover)

A fractional edge cover of a hypergraph H = (V, E) is an
assignment from each hyperedge e ∈ E to a weight ue ∈ R≥0, such
that for any vertex v ∈ V we have

∑
e∈E:v∈e

ue ≥ 1.

Theorem (AGM Bound)

Let q be a full CQ with associated H. For every fractional edge
cover of H, the output size of q is bounded by

∏
e∈E

Nue
e .
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2 .
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Worst-Case Optimal Joins, II

Theorem (Ngo, Porat, Ré & Rudra, 12’)

Any full CQ q can be computed in time O(Nρ∗(H)).

Example (Listing Triangles)

Call a vertex heavy if its degree ≥
√
N and light otherwise.

Directed 2-paths with intermediate vertices being light: there are

N ·
√
N many and they can be found in O(N ·

√
N) = O(N

3
2 ) time.

For each such path, check whether the endpoints are connected.

Otherwise, all vertices are heavy: but there are at most
2N√
N
= O(

√
N) many heavy vertices. Construct the

O(
√
N)-by-O(

√
N) matrix and use matrix multiplication to find in

O((
√
N)3) = O(N

3
2 ) time.
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Fractional Hypertree Width

Definition (Tree Decomposition)

A tree decomposition of H = (V, E) is a pair (T , χ), where T is a
tree and χ : V (T ) → 2V , such that (1) ∀e ∈ E is a subset for
some χ(t), t ∈ V (T ) and (2) ∀v ∈ V the set {t | v ∈ χ(t)} is a
non-empty connected sub-tree of T .

Example

A tree decomposition for is

x1 x2 x3

x1 x3 x4

Definition (Fractional Hypertree Width)

The fractional hypertree width fhtw(H) := min
(T ,χ)

max
t∈V (T )

ρ∗(χ(t)).

Example

The fractional hypertree width of is 2.
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Proof-Assisted eNtropic Degree-Aware

Definition (Submodularity)

A function b : 2V → R+ is submodular if for any X ,Y ⊆ V, we
have b(X ) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

Definition (Submodular Width)

The submodular width subw(H) := max
b

min
(T ,χ)

max
t∈V (T )

b(χ(t)).

Lemma (Marx, 10’)

For any hypergraph H, subw(H) ≤ fhtw(H).

Theorem (Khamis, Ngo & Suciu, 16’)

Any BCQ q can be computed in time Õ(Nsubw(q)) .

Example

The submodular width of is 3
2 .
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Constraint Satisfaction Problem

A constraint satisfaction problem consists of (V ,D,C ), where each
constraint is a relation on a subset of the variables.

Example

3SAT: V the set of variables, D = {0, 1}, C the set of clauses.

Example

BCQ: V the set of variables, D the active domain, C the set of
database relations.

Definition (Fixed-Parameter Tractable)

Let C be a class of hypergraphs. CSP(C) is said to be fixed
parameter tractable if there is an algorithm solving every instance I
of CSP(H) in time f (H)(||I ||)O(1), where f is a computable
function.
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Dichotomies

Theorem (Grohe, 03’)

If C is a recursively enumerable class of hypergraphs with bounded
edge size, then assuming FPT ̸= W[1] the following are equivalent:

1. CSP(C) is polynomial-time solvable.

2. CSP(C) is fixed-parameter tractable.

3. C has bounded treewidth.

Theorem (Max, 13’)

Let C be a recursively enumerable class of hypergraphs. Assuming
the Exponential Time Hypothesis, CSP(C) parametrized by H is
fixed-parameter tractable if and only if C has bounded submodular
width.
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Semiring Framework, I

q () : −R1 (x⃗1) ,R2 (x⃗2) , . . . ,Rn (x⃗n)

q(I ) :=
∨

v :valuation

n∧
i=1

Ri (v (x⃗i ))

q(I ) :=
⊕

v :valuation

n⊗
i=1

Ri (v (x⃗i ))

Example

({True, False},∨,∧) ↔ set semantics
(N,+, ∗) ↔ bag semantics
([0, 1],+, ∗) ↔ probabilistic database
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Semiring Framework, II

Example

Given an n-by-n square matrix A = (aij)

Compute perm(A) :=
∑
σ∈Sn

n∏
i=1

ai ,σ(i) ⇒ #P-hard

Compute asgmt(A) := min
σ∈Sn

n∑
i=1

ai ,σ(i) ⇒ P-time

Example

Given an edge-weighted graph G = (V ,weight)
Compute

∨
V ′⊆V
|V ′|=k

∧
{v ,w}∈V ′

weight({v ,w}) ↔ Boolean k-clique

Compute
∑

V ′⊆V
|V ′|=k

∏
{v ,w}∈V ′

weight({v ,w}) ↔ Counting k-clique

Compute min
V ′⊆V
|V ′|=k

∑
{v ,w}∈V ′

weight({v ,w}) ↔ Minimum k-clique
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Fine-Grained Complexity in 5 Minutes...

“Hardness in easy problems”

The edit distance between two strings := min# insertions,
deletions or substitutions to transfrom from one to the other

Can be solved in O(n2) by simple dynamic programming

Theorem (Backurs & Indyk, 15’)

If the edit distance can be solved in time O(n2−δ) for some
constant δ > 0, then the Strong Exponential Time Hypothesis is
wrong.

Informally, ETH says that 3-SAT cannot be solved in 2o(n) time
and SETH says that k-SAT needs 2n for large k (when k → ∞).
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Conjectures

ETH: ∃δ > 0 such that 3-Sat requires 2δn time.

SETH: ∀ϵ > 0,∃k such that k-Sat on n variables cannot be solved
in O(2(1−ϵ)n) time.

3-SUM: No randomized algorithm can solve 3-SUM on n integers
in {−n4, . . . , n4} cannot be solved in O(n2−ϵ) time for any ϵ > 0.

APSP: No randomized algorithm can solve APSP in O(n3−ϵ) time
for ϵ > 0 on n node graphs with edge weights {−nc , . . . , nc} and
no negative cycles for large enough c .

...
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Conjectures related to k-Clique

Hypothesis (Combinatorial k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any combinatorial algorithm to detect a k-clique in a graph with n
nodes requires nk−o(1) time on a Word RAM model.

Hypothesis (Min Weight k-Clique; Lincoln,
Vassilevska-Williams & Williams, 17’)

Any randomized algorithm to find a k-clique of minimum total
edge weight requires nk−o(1) time on a Word RAM model.
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Clique Embedding Power, I

Definition (Touch)

We say X ,Y ⊆ V touch in H if either X ∩ Y ̸= ∅ or ∃e ∈ E such
that e ∩ X ̸= ∅ and e ∩ Y ̸= ∅.

Definition (K -Clique Embedding)

A k-clique embedding from Ck to H is a mapping ψ from v ∈ [k]
to a non-empty subset ψ(v) ⊆ V such that (1) ∀v , ψ(v) induces a
connected subhypergraph and (2) ∀{v , u}, ψ(v), ψ(u) touch in H.

Example

1

2 3

1 2

3 3

1,2

2,3

3,4

4,5 5,1 1-3

2,3

1,4

7

5,6

4-6
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Clique Embedding Power, II

Definition (Weak Edge Depth)

∀e the weak edge depth of e is dψ(e) := |{v ∈ [k] | ψ(v)∩ e ̸= ∅}|.
The weak edge depth of ψ wed(ψ) := max

e
dψ(e).

Definition (Clique Embedding Power)

The k-clique embedding power is embk(H) := max
ψ

k
wed(ψ) . The

clique embedding power is emb(H) := sup
k≥3

embk(H).

Example
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Main Theorem

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) cannot be computed via a combinatorial
algorithm in time O(|I |emb(H)−ϵ) unless the Combinatorial k-Clique
Conjecture is false.

Proof.

1,2
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5,1 4,5
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Semiring Oblivious Reduction

The proof can be adapted to tropical semiring (min k-clique) by
assigning each pair {u, v} ⊆ [k] to a unique hyperedge according
to ψ.

Theorem (F., Koutris & Zhao, 23’)

For any H, CSP(H) over tropical semiring cannot be computed via
any randomized algorithm in time O(|I |emb(H)−ϵ) unless the Min
Weight k-Clique Conjecture is false.
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Summary

emb subw

Acyclic 1 1

Chordal = =

ℓ-cycle 2− 1/⌈ℓ/2⌉ 2− 1/⌈ℓ/2⌉
K2,ℓ 2− 1/ℓ 2− 1/ℓ

K3,3 2 2

Aℓ (ℓ− 1)/2 (ℓ− 1)/2

Hℓ,k ℓ/k ℓ/k

Qb 17/9 2

Qhb 7/4 2

Table: Clique embedding power and submodular width for some classes of
queries
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Thank You!
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